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Upiversity of Washington
Abstract
Interactive Character Animation Using Dynamic Elastic Simulation
by Steve Capell

Co-Chairs of Supervisory Committee:

Professor Brian Curless
Department of Computer Science and Engineering

Professor Zoran Popovié
Department of Computer Science and Engineering

This dissertation describes a framework for interactively animating characters such as humans
and animals based on dynamic elastic simulation. Using dynamic simulation, the secondary mo-
tion of the character’s soft tissue is computed automatically, and the shape of the character reflects
environmental influences not anticipated by the animator. To endow an elastic body with animation-
friendly control mechanisms we unify dynamic elastic simulation, skeleton-driven deformation, and
shape interpolation. We model a character as an elastic body simulated using the finite element
method. For computational efficiency, we embed the object in a coarse subdivision volume. Subdi-
vision provides topological flexibility, smooth deformations, and hierarchical structure for adaptive
simulation. Skeletal control is made efficient by aligning the subdivision control lattice with the
skeleton. In order to make the computation of elastic dynamics efficient enough for interactive ap-
plications, we introduce a new method of linearizing the nonlinear equations of elasticity dependent
on the pose of the character. Our framework also provides a mechanism to control the shape of
the character via abstract parameters. Because the shape of a character is determined by physical
dynamics, it cannot simply be dictated as in traditional computer animation. Instead, we introduce
forces to control the shape. Force-based shape control guides the shape of the character but is com-
bined with other forces acting on the system and integrated into the dynamics. The result is a system
that produces interactive animations with automatic secondary flesh dynamics, and at the same time

gives the animator a large degree of control over the pose and shape of the character.
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Chapter 1

INTRODUCTION

Computer animation enjoys one chief advantage over traditional hand-drawn animation. By pro-
viding a modeling layer between the animator and the output images, computer animation enables
the animator to express the animation more succinctly, while ignoring unnecessary details. This
leads to a considerable improvement in animation quality because the efforts of the animator are
spent working at a higher level of abstraction than that of ink on paper. The modeling layer turns

the high-level guidance of the animator into frames of animation.

In the traditional computer animation pipeline, one form of modeling is in the rigging of virtual
characters such as animals and humans [2]. The rigging process is analogous to setting up a puppet
to be controlled by strings. After having been rigged, a character’s shape can be controlled via a set
of abstract parameters with meaningful names, like /lift left eyvebrow or bend right knee. For each
keyframe, instead of having to position each vertex of the surface mesh, the animator needs only to
set the values of the control parameters. Once the character has been rigged, shape transformations
such as a smile can be reused throughout the lifetime of a character. But the process of rigging is
quite difficult using current techniques. Much of this difficulty is due to the inherent complexity
of realistic shape deformations. Changes in the apparent shape of an actual animal are due to the

motion of underlying tissues, as well as physical forces.

Another form of modeling that has seen some success in computer animation is the use of
physical laws to simulate realistic motion (e.g., [10, 11, 27, 28, 42, 80]). Physical simulation allows
the automatic synthesis of effects that are difficult to animate otherwise, such as ballistic motion,
fluid flow, and the sagging and vibration of tissue caused by gravity and locomotion. ldeally, the
animator would be freed from designing the motion that is a direct result of physical laws, and

concentrate only on the motion that expresses the intent or emotional state of the characters.
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Figure 1.1 The diagram on the left represents a traditional character animation system.
At the core is a geometric deformation engine which maps skeletal controls (such as joint
angles) and abstract controls (such as frown) to the output shape. Animation is effected by
varying the controls over time. The diagram on the right represents the system presented
in this work. Instead of a geometric deformation engine, the system is based on a dynamic
elastic simulation. This introduces an explicit time dependence, so the final shape is guided
by the input controls, but also varies over time according to the laws of elastic dynamics.

The modeling of motion is especially important for interactive animation systems such as video
games. Since there is no animator available to respond to the user’s input during an interactive
session, it is only through automation that the computer can respond. And it is succinct models that
make automation feasible. Physical simulation is a good example; when a virtual character with a
fat belly is guided interactively through a virtual world, we would expect to see his belly bounce and
sway in correlation with changes in momentum caused by the user’s commands. An efficient way
to achieve such motion would be to encode it in the abstraction of physical equations, from which it

is conceptually straightforward for the computer to produce the appropriate motion.

In this work we bring together rigged character animation, physical simulation of flesh dynam-
ics, and interactivity in a unified framework. In our framework, the motion of the character is
dictated by both the physical model of the character and the rigging of the character. As noted
by Zeltzer [90), the choice between direct control and simulation can be made at various levels
of abstraction; one may choose to simulate atoms, neurons, muscles, etc. Our approach is to use
physical simulation as it fits most naturally into the traditional animation pipeline. Rather than
considering characters that are driven entirely by physical processes (and thus require elaborate
control mechanisms), we consider characters that are controlled in roughly the same manner as tra-

ditional non-dynamic animated characters, but exhibit secondary dynamic behavior. As can be seen



in Figure 1.1, our system is based on elastic dynamics but supports the kinds of controls found in

traditional character animation systems.

1.1 Overview

The characters in our system our defined as elastic solids. As such, their dynamic behavior is
defined by physical equations that we simulate using the finite element method (FEM). We present
the mathematical model and FEM approximation in Chapter 3.

The volumetric finite element mesh need only be specified coarsely, subject to the requirement
that it encompass the geometric model on which simulation will be performed. This requirement is
necessary in order to ensure complete integration over the interior of the object. In fact, as long as
the interior of the object is well-defined, simulation of its elastic deformation is possible regardless
of the the surface representation or complexity.

The volumetric mesh that we use for simulation is not restricted to a regular grid; rather, it is
comprised of elements such as tetrahedra and hexahedra, which may be smoothed using various
subdivision schemes. This flexibility permits construction of meshes that conform better to the
surface of the object, improving simulation quality. In addition, to support adaptive level of detail
during simulation, we construct a hierarchical basis, which allows detail to be introduced or removed
as needed. Our deformable body simulator is presented in Chapter 4.

At the center of traditional computer character animation is control via a skeleton in the form
of a joint hierarchy. In our elastic simulation framework, a skeletal hierarchy drives the motion of
line constraints representing bones. In order to incorporate these constraints efficiently, we align the
edges of the volumetric mesh with the bones of the skeleton. To achieve interactive rates, we pro-
vide a novel method of approximating the nonlinear equations of elasticity with a pose-dependent
linear system. Because one-dimensional line constraints do not fully capture the behavior of three-
dimensional bones, we include a bone deformation energy in a neighborhood of the skeleton. Chap-
ter 5 describes simulation using a skeletal constraint.

Beyond skeletal control, traditional computer animation provides more general mechanisms of
shape control. Our approach is to use forces to effect the desired shape changes. Forces fit nicely

into a physical simulation framework and have many other useful properties. They can be combined



easily, they need not be closely associated with a particular surface shape or representation, and they
can be easily adapted to simulations at any level of resolution. Forces also present an abstraction
of what really happens in animals, without requiring the animator to model every detail of animal
anatomy-—they allow the shape to change naturally since the forces and the inertia due to movement
both affect the resulting shape in motion.

We provide tools for the user to design forces to effect the desired shape changes. Because
editing the forces directly would be highly unintuitive, we provide a mechanism for the user to
simply drag the surface with the mouse. The system automatically computes the underlying forces
that deform the shape to meet the animators specification. Alternatively, forces can be derived from
example surface deformations. Since the forces are not tightly coupled to the surface representation,
they can be transferred to a completely different shape. Shape control using forces is described in

Chapter 6.

1.2 Contributions

The main contribution of this work is a system for interactive character animation that is built on dy-
namic elastic simulation, yet provides the same kinds of control mechanisms as traditional character
animation. Using this system we demonstrate interactive character animation that exhibits realistic
secondary dynamics. In order to accomplish this goal, various subproblems were addressed, which

we place into the three categories that appear below.

1.2.1 Elastic Deformation

Previous to this work, the embedding of objects had been used for the purpose of deformation under
the name of free-form deformation (FFD) [31, 41, 50, 71. 73]. Our framework extends FFD to the
domain of physically based dynamic deformations by combining embedding with FEM.! Taking
advantage of the flexibility of subdivision solids as in the work of MacCracken et al. [50], our
framework is easier than previous approaches to apply to complex characters, and produces more

realistic deformations than raethods based on regular grids of comparable complexity.

IThe work of Faloutsos et al. [31] involved dynamic but not physically based FED,
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As in previous work {27, 28, 33, 37], our simulator supports adaptive processing. Its novel
feature is the use of precomputation to make the adaptation faster and simpler. Like Gortler and
Cohen [33] and Grinspun et al. [37], we adapt by activating and deactivating basis functions. After
precomputing the terms of the mass and stiffness matrices for a fixed number of levels of the hier-
archy, adaptation simply requires rows and columns of the linear system to be added and removed.

Our elastic simulation framework has a few other novel features. We introduce a new method of
linearizing the nonlinear equations of elasticity that is simpler than previous methods but provides
similar results. We also extend to FEM the method of Baraff and Witkin [11] for applying position
constraints directly within an iterative solver, avoiding the need to explicitly reparameterize the

systetn or apply constraints using costly Lagrange multipliers.

1.2.2  Skeleton-Driven Deformation

Another area in which this work contributes is in the driving of an elastic simulation nsing a skeleton.
We introduce a novel method of crafting the function space to make it computationally easier to
enforce the skeletal constraint. A potential energy is introduced that causes these one-dimensional
constraints to behave more like three-dimensional bones.

A key to interactivity is approximation of the full nonlinear equations of elasticity. A new
method of linearizing the equations as a function of the pose of the character makes interactivity
possible while maintaining realistic looking deformations that do not suffer from gross distortions.
This pose-dependent linearity aids not only in dynamic simulation but also in computing static

equilibrium states, and performing optimization.

1.2.3  Shape Control Using Forces

The idea of using forces as a form of rigging to effect shape change in dynamic elastic characters is
another novel idea presented in this work. Other contributions include the efficient use of inverse-
control for rigging and the determination of force rigs from examples. We introduce the transfer of
physically based rigs from one model to another, drawing a correspondence between characters and
transferring forces in a way that takes into consideration changes in scale.

More generally, this work provides a new abstract modeling layer for representing physically
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based deformations. Rather than model internal anatomy directly, which seems like an unnecessary
burden for computer animation, forces provide a mechanism to obtain realistic surface deformations

without modeling internal structure.

Although this work focuses on interactive simulations, the ideas and techniques developed are
also useful for traditional animations that are not interactive. Computation can be a bottleneck
for any animation based on physical simulation, so the techniques used to improve efficiency are
broadly applicable. More importantly, the idea of building character animation systems on a core
of elastic simulation is a general one. This work is a step toward a future in which the benefits
of physical simulation are available to animators, without sacrificing the control that is needed to

achieve the desired results,



Chapter 2

RELATED WORK

Our work draws from and brings together a variety of related work in computer animation and
other fields. This chapter provides a brief review of related previous work, and discusses how we

build on previous work and in what ways our framework is different.

2.1 Free-Form Deformation

Early work on deformations focused on static techniques that enable the user to create individual
deformed states of an object. These deformations could then be used as keyframes for animation.
The introduction of free-form deformation (FFD) by Sederberg et al. made it possible to deform
objects independent of their structure by embedding them in a regular grid [71]. Using FFD, a com-
plex object can be deformed by positioning the control vertices of the coarse control grid. Hsu et al.
provided a method of directly manipulating FFDs [41]. Instead of moving the control points the user
could position any point on the object, making it easier to achieve the desired deformations. Other
extensions to FFD include volume preservation [7, 39], and efforts to provide a more intuitive sculpt-
ing interface [26, 53]. MacCracken and Joy developed three-dimensional lattice subdivision {a.k.a.
subdivision solids or subdivision volumes), an extension of Catmull-Clark subdivision surfaces,
to ease the topological restrictions of FFD [50]. Their scheme allowed FFI) using a non-regular
control lattice. Another important extension to FFD was the introduction of dynamics by Falout-
sos et al. [311. Our framework builds on both of these extensions, using a flexible class of control
lattices as in [50], and embedding objects in dynamic free-form lattices as in [31]. But unlike [31],
where a diagonal stiffness matrix was used, we apply FEM to the theory of continuum elasticity to

simulate the elastic dynamics of the embedded object.



2.2  Skeleton-Driven Deformation and Character Animation

One of the foandational techniques used in modern character animation is to drive the deformation
of the surface via an underlying skeleton (a piecewise linear stick figure in the form of a joint
hierarchy). This technique was introduced in the context of two-dimensional animation by Burtnyk
and Wein [15]. In their framework the skeleton is surrounded by polygons. When the vertices of the
stick figure are moved, the polygons deform; any image or curve represented in the coordinates of
one of the polygons is thus deformed.

Skeleton-driven deformation was extended to three-dimensional animation by Komatsu [44] and
Magnenat-Thalmann et al. [S1]. In both cases the control vertices of the surface are procedurally
positioned based on the joint angles of an underlying skeleton and a few user-defined parameters.
Due to their procedural nature, both techniques are limited in the degree to which the animator can
influence the deformation.

Another key technique in character animation is the representation of shape deformations using
a set of meaningful parameters rather than directly manipulating control vertices. This idea was
introduced by Parke in his work on facial animation {60]. He separates control parameters into two
categories. Conformation parameters capture aspects of the face that vary from person to person,
such as nose length. Expression parameters control deformations relating to the emotional state and
activity of the face, such as smiling. The deformations associated with each parameter are built on
a set of primitive deformation operations including procedural construction, interpolation, rotation,
scaling, and positional offset.

Extended versions of the methods described above form the basis for modern character anima-
tion software such as Maya [2]. A skeleton, which warps the space around it, is used to coarsely
deform the object. Rather than deforming the surface geometry directly, the skeleton typically af-
fects the vertices of a variety of deformers (such as FFDs or those of [60]), which in turn affect the
surface geometry. These deformers have additional parameters that can be directly set by the ani-
mator. During the rigging process, the deformers and their relationship to the skeleton and surface
geometry are established. During animation, the shape is partially determined by the configuration
of the skeleton but can be augmented using the deformation parameters.

Many improvements have been made to the techniques discussed above. Lewis et al. [46] and
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Sloan et al. [74] introduced methods to perform shape interpolation for skeleton-driven characters.
By factoring out the nonlinear warping due to skeletal joints, they are able to linearly interpolate
character shapes associated with particular skeletal configurations. The surface of the character
can be hand-edited in any pose of the skeleton, and the given surfaces are then interpolated to
provide a surface for any other pose. This technique was extended by Kry et al. to use commodity
graphics hardware [45]. They decompose deformations into basis functions associated with each
Jjoint. Scanned data has been used by Allen et al. as the source of shape deformations for character

animation [3, 4].

2.3 Dynamic Deformation

While widely used, static deformation techniques have an important shortcoming. In order to model
realistic dynamic phenomena such as the vibration of fatty tissue, the animator must configure the
deformation for each keyframe. An alternative set of techniques is based on simulating the laws of
physical dynamics over the body.

The use of physically based dynamic deformations for computer animation was pioneered by
Terzopoulos et al. [80]. They applied the Lagrangian equations of motion using a finite difference
scheme to simulate elastic objects with regular parameterizations. Their framework was extended by
Terzopoulos and Fleischer to include plastic deformation and fracture [79]. Terzopoulos and Witkin
later showed that the equations of motion can be linearized about a moving frame of reference, as
long as the deformations are modest [82]. The linearized equations are more stable and can be
solved much more quickly.

Physically based deformations have since been extended in many ways. In order for dynamic
deformable models to be more controllable for animation, Platt and Barr introduced better constraint
handling using Lagrange multipliers [63]. Pentland and Williams obtained realtime simulations by
using only a few vibration modes [61]. Witkin and Welch introduced the use of low-order polyno-
mial deformations to achieve fast deformations, and employed constraints to create composite ob-
jects and to force deformable objects to follow prescribed paths [89]. Baraff and Witkin introduced
non-penetration constraints to prevent objects from intersecting [10]. Metaxas and Terzopoulos

combined global deformations with local finite element deformations [55]. O’Brien and Hodgins



computed realistic fractures of viscoelastic bodies using a finite element framework in which ob-
jects are approximated by a fine tessellation of tetrahedra [58]. A similar framework was used by
Picinbono et al. to achieve interactive simulations of a virtual liver [62].

The techniques described above produce realistic flexible objects, but are not immediately ap-
plicable to character animation. The main sources of difficulty are that such simulations are com-
putationally expensive and difficult to control. The computational expense comes from the inherent
nonlinearity of the equations of elasticity. Using constraints based on Lagrange multipliers has not

been shown to be effective in allowing the level of control needed for character animation.

2.4 Anatomical Modeling

Dynamic deformations have been applied to character animation primarily within the context of
anatomical modeling. Anatomical modeling refers to the modeling of the internal anatomical struc-
ture of a character, such as bones, muscles, and fat. It is motivated by the assertion that by modeling
the internal anatomical structures, increased realism of surface deformations can be achieved, While
not all anatomical models are dynamic, it is natural to consider anatomy when applying dynamics to
animated characters. The anatomy is the source of the dynamical properties of humans and animals.
Thus the works discussed in this section also represent much of the progress in the application of
dynamic deformations to character animation.

In one of the earliest uses of anatomical structure for animation, Waters animated faces using
two muscle models: linear (pull) and sphincter (squeeze) [85]. Chadwick et al. first applied a
layered anatomical approach to character animation [22]. Their models are composed of three
layers: skeleton, fat, and skin. Much like sorme of the methods described earlier, their deformations
are driven by an underlying skeleton. The skeleton is connected directly to some of the vertices of
a dynamic deformation lattice (the fat layer). The surface of the character (the skin) is embedded in
the deformation lattice and deforms accordingly.

At around the same time, Gourret et al. applied the finite element method to the modeling of the
human hand [35]. Anatomically correct bones were used to constrain the deformation of the flesh of
the hand. Their simulation was not dynamic (they solved for static equilibrium states), and muscles

were not explicitly modeled.
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The first explicit modeling of muscle for skeletal character animation was by Chen and Zeltzer
[23]. They modeled not only the geometry of bones and muscles, but the muscle action forces. The
muscle forces, based on biomechanical models, are fed into a dynamic finite element simulation,
Their framework was demonstrated on an individual muscle, but was not applied to a complex
character.

Scheepers et al. [70] and Wilhelms and Van Gelder [87] applied the explicit modeling of anatom-
ical bones and muscles to full-body character animation. In both cases, the muscle shapes are a
function of the configuration of the skeleton. In reality (as in [23]) it is the muscles that control the
bones, but for the purpose of animation it is convenient for the animator to position the skeleton
directly. An important drawback of both of these works in that the muscles do not deform dynami-
cally. However, in [87] a dynamic fatty layer is modeled to connect the statically deforming muscles
to dynamic skin, similar to [22].

Anatomical modeling has been incorporated into the animation pipeline for feature films such as
Jurassic Park I [83], in which dinosaurs were modeled using techniques similar to [87]. Rhythm
and Hues Studios has also used anatomical modeling to obtain realistic animal animation, but with-
out a physically simulated fat layer [68]. In their system, muscle shapes are controlled by the
configuration of the skeleton, and skin floats above the muscles.

Although anatomical modeling has been used effectively in production, it does have some short-
comings. The methods described in [70] and [68] do not model dynamics, so any desired dynamic
effects must be created by the animator. The methods described in [87] and [83] contain a dynamic
fatty layer between the muscles and the skin, but none of these systems support the dynamic sim-
ulation of muscles. Another drawback of anatomical modeling is the inherent complexity of the
anatomy. The difficulty for the user in creating internal geometric structure and for the computer in

updating it as it deforms is prohibitive for many applications.

2.5 Multiresolution and Subdivision-Based Simulation

Hierarchical bases have been widely studied in the field of numerical analysis (see, e.g., [91). In
computer graphics, hierarchical methods have been used to solve many problems including render-

ing [34], geometric modeling [33], and deformable model simulations. Terzopoulos et al. employed



a multigrid solver on a regular grid to solve for dynamic deformations [79]. Debunne et al. created
interactive simulations using an octree representation, adaptive in both space and time [27]. To ani-
mate a surface, the surface points are linked to the grid by a weighting scheme. Later, Debunne et al.
developed an adaptive framework for deformable models employing an unstructured hierarchy of
tetrahedral meshes [28]. At each level of the hierarchy the object is approximated by a tetrahedral
mesh. More recently, Grinspun et al. have developed a general method for organizing hierarchical
simulations involving refinable function bases {37].

QOur framework is similar to [27] in that we embed objects in domains that are easier to param-
eterize than the object itself. But since we do not require that the domain be a parallelepiped, we
can fit it more closely to the underlying object. In our framework, coarse simulations do not require
that the object be coarsely approximated as in [28]. Our coarse simulations factor in the detailed
shape and material properties of the entire object, as approximated at a fine level of detail during the
preprocessing stage.

Subdivision schemes are closely related to hierarchical methods and have also been used for
simulation. Weimer and Warren employed 3D subdivision to solve partial differential equations
associated with fluid flow [86]. Cirak et al. used subdivision surfaces to solve thin shell finite ele-
ment problems, exploiting the smoothness of subdivision basis functions to satisty the integrability
requirements of thin shell elements [24, 25]. McDonnell et al. simulated volumetric subdivision
objects using a mass-spring model [53] and then applied the finite-element methodology to the
problem [54]. Subdivision surfaces have also been shown by Green et al. to be effective in solving

thin shell equations hierarchically using the multigrid method [36].
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Chapter 3

FINITE ELEMENT ELASTICITY

This chapter describes the mathematical model for computing the dynamics of an elastic body,
and its finite element discretization. We model the dynamics of the deformable body as a sys-
tem of second-order ordinary differential equations obtained by applying the finite element method

(FEM) [59, 64, 67] to the Lagrangian formulation of the equations of elasticity [32, 49, 72].

3.1 Lagrangian Formulation

Consider a body whose rest state is defined by a domain € ¢ R3. The trajectory of the body over

time is represented by a function
p:OXR =R : (x,1) — p(x,t). (3.1
It is convenient to decompose p(x, 1) as the sum of the rest state and a displacement
p(x,t) =x+d(x,t), (3.2)

as shown in Figure 3.1. The displacement function d is the solution of a system of second-order
partial differential equations, which we want to approximate by a finite system of second-order
ordinary differential equations. This is done by introducing a finite basis, which is a collection of
basis functions'

B {¢i(x) :i=1,2,...,N}, (3.3)

7

"We will discuss the choice of a particular basis in the next chapter.
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Figure 3.1 The position p(x, t) of a body as it deforms over time can be decomposed into
a rest state x and displacement d(x, ).

Expressing the displacement of the body in terms of B yields the expansion

I\’
d(x,t) = Y _ qi(t)¢i(x), (3.4)
=1

where q;(t) € R3.

We represent the state of the body at time ¢ as a column vector of generalized coordinates
q = q(t) whose i-th component is q;(¢) € R*. Thus both the kinetic energy 7" and the potential
energy U are functions of q:

T=T(q)and U =U(q),

where ¢ denotes the time derivative of q. The equations of motion are then

d [for ou
e ) e e e ug = QL 3.5
;(0.>1 i g = Q, (3.5)

where %f] and

ized dissipative force, added to simulate the effect of friction. A more realistic damping term could

i denote gradients with respect to ¢ and q, respectively. The term puq is a general-



casily be added (see, e.g., [58]). The term Q is a generalized force corresponding to external forces
such as gravity and those arising from constraints. Given an external body force £(x) representing

force per unit volume, the generalized force 1s computed using the formula

Q; = / f(x)oi(x) dV . (3.6)
462

Each component of Q represents the force acting on one generalized coordinate.

The kinetic energy 7'(q) and potential energy U/(q) can be expressed as integrals over the do-
main €2. To derive the equations of motion, we need to express 7" and U in terms of integrals

involving the basis functions .

3.2 Kinetic Energy

The kinetic energy of a moving body is a generalization of the familiar %'mfuz:

. 1/
T::—-/ p(x)p-pdV.
2 Ja

Substituting Equations (3.2) and (3.4) into the above expression resulis in
N N
T=2-3"%" Myd-d, (3.7)

t=1 j=1

b=

where p is the mass density of the body, and

M;; = / p{x) i (%)ep;(x) dV. (3.8)
Jo

d (o1
i (5) e

The matrix M, composed of the 3 x 3 matrix elements M;; = IM;;, where Tis a 3 x 3 identity

Equation (3.7) yields the formula

matrix, is commonly referred to as the mass matrix.
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3.3 Elastic Potential Energy

The potential energy associated with deformation is the elastic potential energy U. Tt is based on
measuring the strain or distortion present in the body. Green’s strain tensor is a common measure

of strain (see, e.g.. [32]):

od;  Od, i: ddy, Ody

T T , i =1,2,3, 39
ox;  Oxy b (39)

Cij == Y
Ow; du;

k=1 0T
A related concept is that of stress (also a tensor), which measures the forces present in a con-
tinuous body. For linear elastic (stress is proportional to strain) and isotropic bodies, stress has the

following relation to strain:

v : . )
Tij = 2G (1 T 21/”1((3)613.1 + eij) y 4,1 =1,2,3,

where tr(e) = fol €45, and

0 for isj
ij =
1 for i=j
is the Kronecker delta function. The scalar G, called the shear modulus, determines how much the
body resists deformation, and the scalar v, called Poisson’s ratio, determines the extent to which

strains in perpendicular directions are related to each other.

The elastic potential energy U, analogous to computing work as force times distance, is com-

puted by taking the component-wise product of the stress and strain tensors:

3 3

U:/QG i——wwir ((’+ZZ€“(U av’ . (3.10)

jem] freml

Note that the quantities GG, v and e are functions of x. By combining Equations (3.4), (3.9), and
(3.10) we can express the elastic potential {7 and its derivatives (with respect to ¢) as polynomial

functions of ¢. The coefficients of these polynomials are integrals that can be precomputed. Their

R

exact form can be found in Appendix A. The matrix S = g,

which is needed during the simula-

tion (Section 4.5), is commonly referred to as the stiffness matrix,
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3.4 Gravity

Gravity is an example of a body force that affects all points inside the body. We treat gravity as a
constant acceleration field specified by the vector g. The gravitational potential energy is then the

integral
, N
e 2/ px)g px)dV = / px)g- (x + Zq.g (,{'),;(x)) dv. (3.11)
) J5 —

Although gravity is conservative, as is evident from the existence of the above potential, for sim-
plicity of exposition we treat it as an external force that is added into Q in Equation (3.5). The

generalized gravitational force is the gradient

g‘“_BUf’__“_(/' A , ) iy
Q=7 o= YQP(X) $i(x)dV | g. (3.12)

The above force can be interpreted as the familiar /g except that the mass term represents all of the

mass associated with a particular basis function.

3.5 Constraints

Using Lagrange multipliers, we support standard constraints that can be described by equations of
the form C = 0. For example, we can constrain a body point p(xg) to coincide with the arbitrary

point pg as follows:
N
0=Cl(q) = p(x) —po=x+ (Z qi fﬁi(xo)) - Po- (3.13)
i=1

The force required to maintain the constraint is of the form — %g A, where the Lagrange multiplier
A is the magnitude of the force. Our total external force is then Q = QY w%«% A. To maintain the

constraint an additional condition must hold: € = %—f&«q = .

3.6 System of Equations

Collecting together the terms described above, substituting them into Equation (3.5), and apply-

ing Banmgarie stabilization (see {55]) to our constraints yields the system of ordinary differential
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equations
st .. ‘ . AU
M 4K qa| | Q-pa-% G14)
&< 0 A ~aC - pC |

The Baumgarte stabilization parameters « and 3 control a generalized, damped spring that acts to

restore the constraints when they are not being met.

Summary

We have laid the groundwork for simulating the dynamic motion of elastic bodies. Computing the
motion of an object corresponds to solving Equation (3.14) given initial values for q and ¢, for
which standard techniques are available. However, such solutions are computationally expensive
(primarily due to the nonlinearity of %%) and thus impractical for interactive systems. In the next
chapter we will preéent a practical system for solving an approximation of Equation (3.14) for

interactive animation.
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Chapter 4

INTERACTIVE SIMULATION FRAMEWORK

The formulation described in the previous chapter can be used to simulate elastic bodies, but
is not practical for interactive systems on current hardware. There are essentially two sources of
computational expense. One is the inherent nonlinearity of the system in Equation (3.14); the func-
tion U(q) is a quartic polynomial. The other is that a large number of degrees of freedom may
be required to model a complex shape. In this chapter we address these problems and present an

interactive system for simulating elastic bodies. Our approach has three key components:

e Embedding - To reduce the number of variables being computed, we embed complex objects
in simple domains (Section 4.1).

e Adaptive simulation - Rather than compute at a fixed resolution, we allow the simulation to
adaptively add detail where it is needed (Sections 4.2 and 4.7).

e Quasi-linearization - We approximate %% by linearizing it about a rotated rest state (Section

4.3).

This chapter addresses the above topics along with various technical details of our simulation sys-

tem.

4.1 Embedding

The framework presented in the previous chapter left open the choice of a particular set of basis
functions (Equation (3.3)). In the FEM setting, the basis is associated with a grid over the body.
The grid provides the body with a regular parametric structure from which the basis functions can
be automatically generated. Four common approaches to grid construction are shown in Figure 4.1.

The advantages and disadvantages of each are outlined below,

e Parameterization — The interior of the object is exactly parameterized by a function on a



Figure 4.1 Comparison among grid types. (&) Parameterization — The body is shown
in gray with a thick border. The lines on the body represent isoparametric curves of the
parameterization. (b) Approximation — The body is approximated by a set of regions, each
of which is parameterized. (c¢) Regular embedding ~ A regular grid, with isoparametric
curves shown, embeds the body. (d) Semi-regular embedding — A set of regions, each
parameterized, embeds the body.

regular domain. This approach is ideal from the point of view of representing the object and

its physical properties exactly. But creating a parameterization is difficult for complex objects.

e Approximation — The object is approximated by a semi-regular domain such as a tetrahedral

mesh. This approach is common for engineering applications but is deficient for computer

graphics because the appearance of the object is crucial.

e Regular embedding — The object is embedded in a regular region such as a parallelepiped.

Unlike approximation, the parametric domain is a superset of the domain of the body, so
every point on the original surface is parameterized by the grid. This allows the original
surface to be factored into the simulation and displayed. The disadvantage is that a fine grid

is necessary for a good fit to the object, without which significant fidelity may be lost.

e Semi-regular embedding — The object is embedded in a semi-regular region such as a tetra-

hedral mesh. Although more difficult to construct than a regular embedding, a semi-regular
embedding allows the grid to more closely conform to the object, improving the fidelity of

the results.

Semi-regular embedding was selected as the best gridding scheme for the current application. It

is much easier to construct a semi-regular embedding than to exactly parameterize the body. Em-

bedding allows a coarse grid to be used in conjunction with the original surface. Embedding is also



agnostic to the underlying surface representation, decoupling the simulation from the modeling of
the surface. And a semi-regular grid produces much better results than a regular grid of comparable
resolution,

Our approach is a generalization to subdivision functions of the embedding methods used in the
finite element community under the headings domain imbedding or fictitious domain methods [13,
52]. Rather than attempting to construct a basis of functions on the region {2, one instead views
() as embedded in a semi-regular region ) (for instance, a collection of cubes in R3) for which
a basis is known. Restriction to ) then induces a collection of functions on the original domain.
Figures 4.7(a) and 4.7(d) illustrate the embedding approach applied to a dragon-shaped region in
three dimensions.

More generally, consider a piecewise smooth homeomorphism
r:K—QcR e r(u) 4.1y

from a three-dimensional hexahedral complex K with canonical coordinates « onto a superset 0>
Q. Roughly speaking, a hexahedral complex is a collection of abstract cubes which may share faces,
edges, and vertices. The homeomorphism r, which parameterizes €1, can then be used to transfer a
basis defined on K to one on Q.

We use subdivision rules on K to define both the parameterization r and a hierarchical basis 5
of functions on €2 that will be described in the next section. A subdivision framework was chosen

for the following reasons:

1. They allow a large class of semi-regular grids so the object can be embedded snugly with

fewer elements.

[

They are intrinsically hierarchical, so a hierarchical basis is easily constructed (Section 4.2).

(8]

. They provide a choice between basis functions that are smooth almost everywhere, and trilin-
ear basis functions with smaller support for faster computation.

4. They provide a smoothing filter.

Our implementation is based on hexahedral subdivision and supports trilinear subdivision (see Ap-

pendix B) and the subdivision schemes of MacCracken and Joy [50] and Bajaj et al. [8] (multi-linear
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Figure 4.2 On the left is a cell complex whose vertices have been positioned in R?. We
refer to a cell complex together with a mapping of its vertices into R® as a control lattice.
We visualize a control lattice using linear interpolation to define edges and faces in R?,
The center column of images show the result of subdividing the control lattice on the left
once using trilinear subdivision (top) and the MacCracken-Joy scheme augmented with
the sharp surface rules of [29] (bottom). The rightmost images represent the limit volumes
produced by infinite subdivision. They are computed by subdividing a few times and then
applying limit masks to the vertices. In the rightmost images the object has been colored
to indicate the surface of the volumetric parameterization induced by subdivision. The
dark green lines correspond to boundaries between the cells of K. The light green lines
represent isoparametric curves within a cell.

cell averaging, or MLLCA), which are generalizations of Catmull-Clark subdivision surfaces [20]. In
all three cases, we support only those complexes that result in hexahedral complexes after one subdi-
vision step. This restriction is necessary in order to ensure that all objects are parameterized by K in
a straightforward manner. It still allows a variety of polyhedral cells, including hexahedra, tetrahe-
dra and triangular prisms. While less has been proven about the smoothness of the MacCracken-Joy
scheme than ML.CA, we have found that the former produces surfaces that are more visually pleas-
ing. Therefore we used the trilinear and MacCracken-Joy schemes for the examples shown in this
chapter. In Chapter 5 we use the MLLCA scheme because it supports the internal sharp edges required
to meet skeletal constraints,

When one of the subdivision schemes mentioned above is applied to a cell complex K it gives
rise to a function space spanned by a basis By = {¢(u) 14 = 1,2,..., Ny}, where Np is the num-

ber of vertices of K. The basis function cﬁ?( u) is computed by assigning a 1 to the 4-th vertex of K



and a ( to all other vertices and then applying subdivision. Thus, there is a correspondence between
the vertices of K and the basis functions. For more details on the relationship between subdivision
schemes and basis functions see [48]. The parameterization r is formed by assigning positions to
the vertices of K, which corresponds to taking a linear combination of the basis functions:

Ny

r(u) =Y ripf(u), (4.2)
gl

where r; € R®. We refer to a cell complex & together with a mapping of its vertices into R® as a
control lattice.

Not every set of coefficients {r;} defines a homeomorphism when assigned to the vertices of
K. Unfortunately, we do not know of an easy way to detect overlap in r, so we resort to numerical
approximation to verify that r is indeed a homeomorphism. This is done by approximating K as a
collection of tetrahedra and r as a piecewise linear function, and then checking that no two tetrahedra
overlap when mapped by r to ). If tetrahedra do overlap, the vertices must be repositioned.

Figure 4.2 shows examples of a trilinear and a MacCracken-Joy subdivision solid that are pa-
rameterized by a cell complex. Figure 4.8(b) shows another example of a region parameterized

using trilinear subdivision.

4.2 The Hierarchical Basis

By composing the basis functions in By with r and then restricting them to {2 they can be treated
as basis functions on €2, We angment this basis to form the hierarchical basis [9] that we use
for adaptive simulation. Roughly speaking, a collection B = {¢;(u) : ¢ = 1,2,...} is called a
hierarchical basis if the diameter of the support of ¢; decreases as i increases.’

The aforementioned subdivision schemes give rise to infinite sequences of nested function spaces
[48] spanned by the elements of a hierarchical basis B. Analogous to the the basis By described
above on K, each finite-dimensional space is spanned by a set of functions, one corresponding 0
each vertex of the subdivided cell complexes. Using a standard construction (see, e.g., [70]), we

form a hierarchical basis by selecting a linearly independent subset of these basis functions.

It is atso desirable that B be well-behaved with respect to the L?-inner product on /{(€2).



b 7 s

www» PR M\\m\
)\\ A5

\M-\\\@-m MM‘“‘* (721

0@
B ‘ & {731

K@ e M7 Ois

uy,

Figure 4.3 On the left is a visualization of one cell in a complex K = K. The original
cell is shown in red; green and blue edges indicate two finer subdivisions. In our frame-
work, the complex is actually three dimensional, but we show the two dimensional case for
convenience. Corresponding to each vertex of K¢ is a basis function. After subdividing
Ky once, we introduce new vertices that belong to K (in addition to the vertices of Ky,
as shown in the key next to the grid). We could place basis functions (half as big in each
dimension with respect to the coarser level) at all vertices of K¢. Instead, we trim this
overrepresentation by only placing the new functions at the newly created vertices (shown
in green). The process continues recursively (e.g., new basis functions at the blue vertices).
Note that, since only one basis function is centered at each vertex, the index of that vertex
uniquely identifies the basis function. On the right we see a one dimensional visualization
of a slice through the basis functions along the line from vertex 6 to vertex 8 as the param-
eter u; varies. On the top are the subdivision basis functions at level 0. In the middle are
the level 1 subdivision basis functions, which form an overcomplete basis when combined
with the level 0 basis functions. On the bottom are the level 1 basis functions that remain
after discarding every other basis function; they are included in the hierarchical basis.



[
W

Figure 4.3 demonstrates the hierarchical basis construction. At the coarsest level are the basis
functions By = {zf:%’ 1i = 1,2,..., Np} that correspond to the original vertices of K. Repeated sub-
division of K introduces an increasingly fine sequence of complexes K, (see Figure 4.2). Applying
subdivision to the complex K, gives rise to basis functions at level k. The basis By, is inductively
formed from By..; by appending the basis functions H)f on K}, where a ranges over the set of odd
vertices of K, (vertices introduced when we subdivide I;__1). The hierarchical basis B3 is the union
of the nested sequence

BocBiocByc--. 4.3)

For practical computation, we truncate the basis after N basis functions by including only the first
Nievets levels of the hierarchy. Typically, we let Ny = 3. Notice that the index & is redundant
because each vertex ¢ appears at a unique subdivision level k. We, therefore, drop the index £k,
writing ¢; instead of ¢¥.

As mentioned previously, the basis functions can be treated as functions on 2. This is convenient
because the equations of elasticity are easiest to describe in Euclidean coordinates, as in Chapter 3.
Considering the basis functions as functions on €2, the parameterization r provides an expansion of

the identity function:
Ng

N
x=r(x)= Z I‘i¢?(x) = Zrifﬁi(x) -
=1 i=1

Note that for convenience we represent r as a sum over the entire hierarchical basis although only
the coarse basis functions are used (i.e., r; = 0 for i > Ny).
In Figure 4.8(c) the vertices of a subdivided control lattice have been colored to indicate the

structure of the hierarchical basis.

4.3 Quasi-linearization

For complex models in which there are many basis functions, the full nonlinear equations of elas-
ticity are too expensive to solve interactively becanse even evaluating the stiffness matrix once per
simulation step is costly, and the equations of motion must be linearized. We support two methods
of linearization, in addition to the nonlinear solver.

If the deformations are small, the nonlinear terms of strain (Equation (3.9)) can be dropped,



resulting in the traditional quadratic (instead of quartic) elastic potential, and thus a constant stiffness
matrix. If the deformations are large but differ only slightly from a rigid motion then the strain can
be linearized about a floating frame of reference that roughly tracks the orientation of the object
(see [82]). If large deformations are required and significant error is unacceptable, then the full

non-linear formulation is necessary.

We provide a novel approach to the large-rotation small-deformation scenario. Terzopoulos et al.
[82] (and similar formulations in the engineering literature, e.g., [72]) integrate a moving frame
of reference into the dynamic equations, adding greatly to the complexity of the exposition and
implementation. The frame of reference attempts to track the configuration of the object as if it
were arigid body. Besides the added complexity, another problem is that over time, due to numerical

error, the frame of reference will drift out of alignment with the deforming body.

Our approach is to choose a frame of reference for each timestep to reduce the amount of rotation

present in the displacement function. We rewrite the state during timestep k as
p(x,t) = R*(x +d*(x,1)), , (4.4)

where RF is a rotation matrix that transforms points from the local reference frame into the world
coordinate system, and d¥ represents the displacement of the body in the local reference frame. We
proceed to solve for d* in the local coordinate frame. Using nonlinear elasticity, due to rotational
invariance, this reparameterization does not effect the solution. In the linear case, choosing R” so

that d* is small and contains little rotation greatly reduces the error caused by linearization.

After timestep k, the displacement d* may contain a rotational component. We extract this
component in order to compute R¥*1, which determines the local reference frame that will be used
during timestep £ + 1. As shown in Appendix C, the rotation present in d* can be estimated as
%][V x d*|| radians about the V x d* axis. Under the assumption that the body is mildly deformed
and thus the rotation is nearly uniform throughout the body, we evaluate the rotation at a single
point xg. Letting AR¥ be the corresponding rotation matrix, we have R¥ = R*ARF. Applying

Equation (4.4) for timesteps k and & + 1, the displacement in the new coordinate frame is

dk»M - (ARk)T(X. 4 dk) —x,



and its velocity is

ak+-1 - (ARIC)T(dIc) )

Applying finite element expansion, the update at the end of timestep k becomes

qgs!“i"l - (ARk)T(ri + q;i/) - T, and

g = (ARMT(&).

4.4 Numerical Integration

To speed up the computation, we precompute the mass, gravity, and elasticity integrals (Equations
(3.8), (3.12), and (A.2)) using numerical quadrature. We first subdivide to the level desired for
quadrature (at least once) and compute the values of all of the basis functions at each of the vertices.
After subdividing, the domain is composed of hexahedral cells, which we proceed to split into
tetrahedra. We then compute the integrals over each domain tetrahedron using piecewise linear
approximations to the basis functions. Since at every vertex the Euclidean coordinates are known,
we can compute the spatial derivatives of the basis functions directly without using knowledge about
the parameterization of the object by the complex K.

As described in Section 4.2, we represent functions on ) by restricting functions on K to (.
The restriction is approximated during numerical quadrature at the level of the tetrahedra mentioned
in the previous paragraph. When computing integrals over {2, we do not integrate over tetrahedra
that are deemed to be outside the object. We accomplish this by regularly sampling each tetrahedron
and testing whether the sampled point is outside the surface. If all of the sampled points are outside
the surface then the tetrahedron is discarded. In our current implementation, tetrahedra that straddle
the surface contribute to the computed integrals (an improvement would be to weight the integral
over a tetrahedron according to the fraction of sample points inside the object). Figure 4.8(d) shows
the tetrahedra that were used to approximate the interior of the dragon niodel.

The computed integrals involve products of as many as four basis functions (see Appendix A),
so it is important to know which basis functions are nonzero over a given tetrahedron; otherwise,
all 4-tuples would be integrated. We accomplish this by storing the basis heights as sparse vectors

at each vertex., Our subdivision scheme operates directly on the sparse vectors to compute the
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basis heights. By examining the sparse vectors of basis heights at each vertex of a tetrahedron, the

integrator knows which basis functions are nonzero.

4.5 Solving the ODEs

Once we have precomputed the mass and stiffness integrals, we are prepared to solve the system
in Equation (3.14) together with initial values for p and p (and thus g and q). Solution techniques
typically start with known values for q and ¢ and proceed to compute the values of these variables
at a sequence of subsequent points in time.

There are two common classes for solving such systems of differential equations. Explicit tech-
niques compute the future state of the system using information about the state of the system at
the current and previous timesteps. Forward Euler and Runga-Kutta are examples of such explicit
methods. Implicit techniques express the future state in terms of quantities evaluated at the end of
the timestep, in addition to previously known quantities. Implicit methods are much more stable for
large timesteps than explicit methods because rather than jumping blindly forward, the conditions
at the future state are taken into consideration. For discussions of implicit methods see [11, 38].

We desire a fast, stable solution, so we use an implicit method to solve our system of equations.
Applying the method of [11], adapted to our constrained system, results in the following nonlinear

system of equations:

M €7 [av] | #F(qo+ h(vo+ Av), vy + Av) “.5)
% 0 A ~aC - 5C | |

where h is the timestep length, Av is the change in the velocity ¢ over the timestep, g is the value
of ¢ at the beginning of the timestep, vy is the value of ¢ at the beginning of the timestep, and
F=pq-~Q7 -~ %% is the sum of all forces acting on the system (excluding the constraint force).
We solve the above system of equations for Av and A using the Newton-Raphson root-finding
method. The cost of solving the equations comes primarily from computing the stiffness matrix,
which is required to compute the gradient of Equation (4.5). For our simulations we have found it
acceptable to perform only one iteration of Newton-Raphson. This corresponds to linearization of

Equation (4.5) at each timestep (as in [11]), but should not be confused with the commonly used
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linearization of strain, which is only accurate for small deformations (we discuss such linearization
in Section 4.3). The linear systems that need to be solved when performing Newton-Raphson on
Equation (4.5) are symmetric but indefinite, so we solve them using the iterative minres algorithm

using sparse matrices {65]. After computing Av, the state of the system is updated as follows:

-+ Av

g« g+ hq.
4.6 Runtime Details

The surface of the object is described as a triangle mesh. At each vertex of the surface mesh, we
store a sparse vector of basis function values. The value of a function (such as d) at a vertex of the
surface mesh can be reconstructed from the basis values stored at the vertex. To evaluate a function
within a triangle of the surface mesh, we interpolate between the values at the three vertices. The
basis function information at the vertices facilitates the setting up of a constraint when the user
clicks and drags the surface. Using the basis information at the vertices we can quickly select the

relevant subset of basis functions, and set up a constraint at that point as in Section 3.5.

4.7 Adapting the Basis

Because the basis B is hierarchical, it is possible to adaptively choose an active basis B4 C B to
be used in the place of B so that detail is added where needed. There are two pertinent questions
regarding adaptation: “how to adapt?” and “when and where to adapt?”

The first question is easily answered in our framework. We choose a priori a maximum allow-
able subdivision level k and precompute the mass and stiffness terms needed to form the system in
Equation (4.5) when B4 = By. These terms are stored in sparse data structures®. When a decision
is made to add or remove a basis function from the active basis B 4, it is only necessary to add or
remove precomputed terms from the current mass and stiffness matrices. We note that the idea of

adapting the basis is not new (see, e.g., [33]), and has recently been generalized by Grinspun et

*In the lingarized case, the terms of the mass and stiffness matrices are stored in sparse matrices, In the nonlinear
case, we store the integrals from Equation (A.2) in hash tables.



al. [37].

We address the second question by a heuristic similar to the one used in [28]: areas of higher
deformation require more detail. The elements of B}, are organized into a tree, with a parent-child
relationship between basis functions at adjacent subdivision levels and having intersecting support.
Each level of the hierarchy has two separate thresholds for determining when to refine or coarsen.
If the deformation is above the activation threshold in the region of support of a basis function ¢;
then the children of ¢; are activated. A basis function is deactivated if the deformation is below
the deactivation threshold in its region of support. As noted in [28], a lower deactivation threshold

discourages the system from immediately removing newly introduced basis functions.

4.8 Linear Subspace Constraints

Because we would like our objects to interact with other objects, position constraints are important,
but the use of Lagrange multipliers as in Equation (3.14) slows down the simulation by increasing
its complexity. The framework of Baraff and Witkin [11] provides an elegant alternative for particle
systems. During each internal step of a conjugate gradients (CG) solver they project out certain
components of Av corresponding to constrained particles. Here we show that this technique can be

extended to include position constraints at any point in a continuous body.

If we remove the constraints from Equation (4.5), and build into the formulation a single iteration

of Newton-Raphson, we arrive at the system presented in {11}:

Ag = h(vo+ Av) 4.6)
1\/1-—/;,-‘-,’1’;--h?ﬁE Av = h FOMQEVQ , 4.7)
oq 0q dq

where Fy is the value of F at the beginning of the timestep, and all derivatives are evaluated at the

beginning of the timestep. Moving position constraints in our framework are of the form:

de(t) =) qithu(x,), (4.8)

which simply says that the displacement at x, conforms to some known function d.. Evaluating



Equation (4.6) at x, results in:

N N
o do(t+ h) —d.(t

> Avigi(xe) = ( ]2 ) > Vo dilxc) - (4.9)

i=1 ' i==l

The right hand side of the above equation is simply a constant a, that can be computed at the
beginning of each timestep. If we accumulate the z, y, and z components of the 3-vectors a,. into
the N-vectors a®, where o € {x,y, z}, define the matrix C with elements C;. = ¢;(x.), and

separate Av into its x, y, and z components Av®, Equation (4.9) becomes:
CTAv® = a®, o€ {z,y,2}. (4.10)

So each constraint requires that Av be constant along three particular directions. Maintaining the

constraints involves the following steps:

1. At the beginning of each timestep, Av is initialized so that Equation (4.10) holds. This
is accomplished by computing the QR-decomposition C = QR and transforming Equa-
tion (4.10) into RTb* = a® Av® = Qb?, from which Av can be easily computed. Al-
though QR-decomposition of an n x m matrix requires O(nm?) time, in our case the number
of constraints m is typically small, so the computational cost is low.

2. Each column ¢ of C has an associated projection matrix P = I — cc” /cT¢, which, when ap-
plied to a vector, eliminates the component in the direction of c. These projectors are applied
during CG such that incremental updates to Av are orthogonal to the vectors ¢, ensuring that

Equation (4.10) remains true (for details see [11]).

In our current framework, conflicting constraints can be detected during QR-decomposition and
removed. In the future we hope to augment this method to solve over-constrained systems more

elegantly, as was done for FFD by Hsu et al. [41).

4.9 Realtime Simulation

In order for an interactive simulation to have the appearance of realism, it is important for the

simulation proceed at a consistent pace. Adaptively changing the basis introduces variation in the



Figure 4.4 The deformation of an object modeled using MacCracken-Joy subdivision
with sharp surface rules. Upon releasing the constraints (represented as cyan spheres in the
first frame), the object dynamically vibrates and eventually returns to its rest shape.

amount of time required to compute a single timestep. Since our simulator can take large timesteps
we can remedy this problem by adjusting the timestep to stay in sync with actual time. For example,
when basis functions are added each step of the simulation will take longer due to the increased
number of degrees of freedom in the system. We compensate by integrating over a longer period of
virtual time during each timestep.

So why not take arbitrarily large timesteps? First, interactive applications demand high frame
rates. It is best to display a new state of the system at each video refresh cycle. Second, implicit
integration exacts payment for its improved stability. Large timesteps result in unrealistic damping
(see, e.g., [30]). For these reasons we typically set the timestep to the amount of physical time that

lapsed during the previous iteration of simulation and display.

4,10 Results

We now describe the results of implementing our framework and running a variety of simulations.
All of the simulations were performed interactively on a standard desktop PC (Athlon 1.4 GHz, 256
MB ram).

Sharp Features. DeRose and Kass [29] added rules for sharp features to the Catmull-Clark
subdivision framework. Since the boundaries of MacCracken-Joy solids are Catmull-Clark surfaces,

we can easily include sharp features in our framework.” Figure 4.4 shows a simulation involving an

*We have not stadied the limit behavior of the subdivision scheme that results from adding sharp features to the
surfaces of MacCracken-Joy volumes, but it seems to work well in practice.
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Figure 4.5 A collection of frames from an interaction with a duck model. The duck is
modeled directly as a MacCracken-Joy subdivision solid. The motion of the duck is limited
by the floor and wall constraints.

Figure 4.6 A cucumber-like object (modeled as a MacCracken-Joy subdivision solid),
with a longitudinally varying shear modulus . The object is being shaken by the bottom
using a position constraint. The bottom is firm and maintains its shape, while the top
deforms drastically.

object with sharp surface features.

Virtual Environments. We have implemented a rudimentary collision detection scheme to
demonstrate the feasibility of placing our objects in a virtual environment. We use surface con-
straints to stop vertices on the model from passing through walls in the environment. In Figure 4.5
a duck is being tossed about in a box interactively. Our quasi-linearization scheme performed as
expected; as long as deformations are modest the results appear realistic.

Varying Material Properties. Our system supports material properties that vary both spatially
and temporally. Material properties are incorporated during the computation of the stiffness and

mass matrices. During the quadrature phase, the values for v/, ¢, and p need not be constant. In ad-



dition, because our basis is hierarchical, material properties are smoothly factored into the the mass
and stiffness matrices at all levels. For a particular generalized coordinate, the material properties at
all points in the support of its associated basis function are factored into the computation of the mass
and stiffness matrices. Consequently, the material properties of the object are correctly modeled,
even when only a subset of the basis is used in the simulation. For instance, the shear modulus G of
the object in Figure 4.6 varies along its length. When it is shaken, one end wobbles like soft rubber
while the other remains almost rigid. An easy way to represent varying material properties over the
body is to use the coarse subdivision basis. Then we need only specify control values at the coarse
level vertices, The subdivision rules generate values throughout the object.

We also allow the shear modulus G to be scaled globally at runtime. This does not require re-
computation because it uniformly scales the entire stiffness matrix. Scaling & globally makes the
object seem more or less firm.

Comparison with Embedding in a Regular Grid. Figure 4.7 shows a comparison between
our method and one in which the object is embedded in a regular grid. In the simulation, position
constraints were used to stretch the dragon (by pulling on its front and back) and open its mouth.
Despite having more degrees of freedom, and thus requiring more computation time, the simulation
based on a regular grid is less convincing. Rather than having the mouth open and the body uncoil,
as we would expect, the mouth and body seem to stretch uniformly. This effect is caused by basis
functions whose support spans the empty regions adjacent to distinct parts of the dragon, thus corre-
lating the motion of parts that would not naturally move together. In contrast, our method produces
a more natural deformation because the grid can be made to fit the object much more closely.

Adaptation. Figure 4.8 illustrates our adaptive simulation algorithm applied to the dragon
model. The coarsest level basis By has 88 basis functions, while the finest level basis By has 2245
elements. Using the quasi-linear solver, the simulation took about 0.02 seconds per frame when only

the coarse basis is active. At the level of adaptation shown, each frame required about 0.1 seconds.

Summary

The collection of techniques presented in this chapter enable high-quality deformation of complex

objects at interactive rates. Embedding allows complex objects to be simulated coarsely, while the
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Figure 4.7 A comparison of simulations using a regular grid (top row) and a non-regular
grid (bottom row), both using trilinear basis functions. The left images show the dragon in
its rest state surrounded by (a) a regular grid (375 degrees of freedom) and (d) a non-regular
grid (264 degrees of freedom). The center images show a simulation in which position
constraints have been used to stretch the dragon longitudinally and open its mouth. Black
spheres represent position constraints and red spheres represent the degrees of freedom of
the system. In both cases, trilinear basis functions were used. The rightmost images show
the deformed state of the dragon.
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Figure 4.8 (a) The dragon in its rest state. (b) A trilinear subdivision volume that embeds
the dragon. The surface has been textured to indicate how the volume is parameterized.
(c) The hierarchical structure of the subdivision volume. Red spheres correspond to level 0
basis functions, green to level 1, and blue to level 2. (d) The tetrahedral approximation of
the dragon that is used to compute integrals over its interior (i.e., for numerical quadrature).
(e) The dragon being deformed by a position constraint pulling on the upper lip. (f) The
basis functions introduced by the adaptive solver.
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use of subdivision solids provides the flexibility needed to fit the coarsely parameterized domain to
the object. By linearizing strain about a rotated rest state we achieve interactive rates while allowing
the object to rotate freely. Adaptive simulation using a hierarchical basis allows detail to be added
to the simulation where and when it is needed.

However, the system presented in this chapter has two significant deficiencies in the context of
character animation. Our linearization scheme assumes that the state of the object is only a modest
deformation from a global rotation of the rest state. This assumption is invalid for characters such
as humans. For example, when an arm bends, the upper arm and lower arm are only modestly
deformed, but they are oriented differently. The other problem is one of control. Our only control
mechanism is to constrain the motion of a small number of points on the surface of the body, which
is not a very effective way to dictate useful configurations. In the next chapter we address these

1ssues.
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Chapter 5

SKELETON-DRIVEN DEFORMATION

While the framework presented thus far produces interactive animation of elastic objects, it is
hard to imagine using it for character animation because there are no mechanisms for an animator
to control the shape of the object except by using general constraints. In this chapter we augment
the framework by providing skeletal control of the simulated objects.

Controlling characters by posing an underlying skeleton is at the core of modern animation
practice [2]. Typically, at each keyframe the character is posed by setting the joint angles of the
skeleton, thereby positioning and orienting each bone. The shape of the character is determined
primarily by a skinning procedure that deforms the surface of the character according to the pose
of the skeleton. The final surface results from then applying additional deformations to the skinned
surface.

Our goal is to provide an analogous skeletal control mechanism in our simulation framework.
We would like the shape of the character to follow the motion of a skeleton that is dictated by the
animator, and at the same time exhibit realistic elastic dynamics. To accomplish this we address
three issues, each of which is critical in order to produce realistic results within the computational

limits imposed by interactivity:

e Skeletal constraints — We introduce an efficient mechanism of constraining the motion of the
elastic body to the prescribed motion of a piecewise linear skeleton (Section 3.1).

e Pose-dependent linearization ~ We linearize the equations of elasticity using rotations pre-
dicted from the configuration of the skeleton (Section 5.2).

e Bone deformation energy — To reproduce the effect of volumetric bones, we introduce a po-

tential energy that penalizes deformation in the neighborhood of the skeleton (Section 5.3).

Following the three sections dedicated to the above topics, we discuss the instrumentation of models

in Section 5.4, and results in Section 5.5.
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5.1 Skeletal Constraints

Since our goal is to provide the animator with traditional skeletal control, we augment our frame-
work with a traditional animation skeleton in the form of a transformation hierarchy. We can view

the skeleton as a union of bones N
¥

S=JB,
bw

where B, C 2 is a line segment. The skeleton is posed by setting a vector of pose parameters
o= (a1, qn,...,0N,) € RN, which may be Euler angles, quaternions, etc. The pose parameters

induce an affine mapping associated with each bone
Tp(ex) : R - RY : x— Ryx + cp(x), (5.1

where Ry is a rotation matrix and cp(x) = ¢; is a translation (a constant displacement field). It is
important to express translational displacement fields such as ¢, as a function of x becanse we will

need to expand them against the basis 3 as follows:

N
co(x) = > &1 ¢i(x). (5.2)
fe=l
Since the coarse basis functions form a partition of unity,

A ¢y for i < Ny
Cps =

4

0 otherwise .

An animation of S involves varying the pose parameters over time: o = (t). This induces a
time dependent function

pg: S xR — R?

that positions the points on the skeleton over time. Rigidity of the bones implies that pg is an
isometry on each edge of S. In particular, pg is a piecewise linear function on S. In order for the
motion of the character to conform to the motion of the skeleton, p g must be the restriction of p to

S (recall Equation (3.1)). The function p(x, t) is then the solution of a system of partial differential
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Figure 5.1 An object @ ¢ R? instrumented with a skeleton S that is aligned with the
control lattice that determines the domain 2 D €.

equations, subject to the constraint p(x, t) = pg(x,t) forx € S.

One possible implementation of the skeletal constraint would be to use Lagrange multipliers as
discussed in Chapter 3, but it is a poor solution for a variety of reasons. First, the chosen basis is un-
likely to include functions that allow the constraint to be met (the basis would have to allow creases
along arbitrary line segments, and derivative discontinuities where bones meet). Second, a con-
straint function in the form of Equation (3.13) is complicated for the skeleton because a continuum
of points is involved. Third, since many of the elements of q affect pg, the system in Equation (3.14)

becomes much larger than without the constraint.

Our approach is to align the skeleton with the control lattice as shown in Figure 5.1. Consider
some useful properties of the trilinear basis. Because it is an interpolating basis, d(x;,t) = q;(f)
for 1 <i < N. Additionally, functions composed from the trilinear basis are linear along the edges
of the control lattice. Together these conditions imply that we can constrain the body to the skeleton
by simply constraining the coefficients q;(¢), for x; € S, to the motion of the skeleton dictated by
a(t). The remaining coefficients are then determined by solving the elastodynamic equations.

The MLCA subdivision scheme has a similar property: if an edge and its adjoining vertices
are tagged as sharp, a rigid transformation of the endpoints of the edge always corresponds to an
1sometry on the edge. So when using the MLLCA scheme we can also constrain the skeleton simply
by constraining a subset of the coefficients. Our scheme for constraining the motion of the body to
the skeleton takes advantage of the ability of the trilinear and MLCA bases to meet linear constraints

along the edges of the control lattice. Thus, for the remainder of this work we will no longer consider
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the MacCracken-Joy scheme.

To simplify notation we introduce the functions skel and free to select the indices of the con-

strained and free control vertices, respectively:

skel(s) = ¢, where x; is the s-th control vertex s.t. x; € S

free(f) = i, where x; is the f-th control vertex s.t. x; € K\ S.

The constrained vertices then form the set {Xg.s) ¢ ¢ = 1,2,..., Ng} and the free vertices form

the set {Xyee(r) 1 f = 1,2,..., Np}. We partition the vector q into the vectors qg and qp, where

(as)s = Ustel(s) » for1 << Ng, and

(Ar); = Ape(py » for 1 £ f < Np.

The vector ¢g contains the variables constrained to the motion of the skeleton and the vector ¢y
contains the free variables. As we have already observed, qg(t) is determined by «(t). The vector

qr(t) is determined by solving the Euler-Lagrange equation:

d [ 0T oUu
il il 5.
7 (8 1)+6q +pqr = Qp, (5.3)
where
(QF)f = eree(f) . (5.4)

We partition the mass matrix into Mgg, Mgr, Mpg, and Mpp as follows:

( .‘5.5)9! = M mz ) skel(t)
(M&f’ )sq - M‘.kel s)free(qg)
(MFrs) st = Mpge(1),sheley » and

(Mzr) g = Mpee(s) freelg) - (5.5)

where M gg is of dimension Ng % Ng, Mgp is Ng x Np, Mg 18 Np % Ng, and Mg is Np x Np,



gach containing 3 x 3 matrices as elements. It follows that

d [ or
—= | =] = Mpsfs + Mprlr,
T (aqﬁ') Fsds + Mprgr

so Equation (5.3) becomes the system of ordinary differential equations

MppqQp = Qp — pgr — % ~ Mpsds - (5.6)

We can now solve Equation (5.6) using the implicit method described in Section 4.5. By aligning

the skeleton with the control lattice, we have reduced the system to size Ny and eliminated the need
for a complicated Lagrangian constraint. However, Equation (5.6) is nonlinear because U is a fourth
degree polynomial in q (and thus ¢#). As in Chapter 4, the system must be simplified in order to

simulate at interactive speeds using more than a few control vertices. In the next section we will

discuss a novel linearization procedure that is appropriate for skeleton-driven character animation.

5.2 Pose-Dependent Linearization

The major bottleneck in solving the nonlinear system in Equation (5.6) is the computation of the
stiffness matrix at each timestep. A well-known simplification is to linearize the strain tensor by
dropping the last term in Equation (3.9), which results in a quadratic elastic potential and thus a
constant stiffness matrix (which is composed of the first three addends in Equation (A.3)). The

resulting system of equations is
Mppr = QF — pdr — Mpsds — Sprqr — Spsqs,

where the stiffness matrix S, evaluated at ¢¢ = 0, has been partitioned as in Equation (5.5). As
compared to other simplifications, such as using a mass-spring-based elastic potential, linearization
of strain has the advantage that it is a very good approximation of nonlinear elasticity, but only when
the deformation is small; for large deformations, severe distortions occur. The method introduced
in Section 4.3 allows the object to undergo a large rotation, but does not ease the restriction that the

deformation be modest. For skeletally-controlled characters, this restriction is inappropriate because
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a single rotation is not a good approximation of the state; large deformations occur at the joints.

In this section we present two new methods of linearizing the equations of motion for skeletally
controlled characters. Both procedures are based on the observation that the soft tissues of verte-
brates do not typically undergo large deformations relative to nearby bones. Based on this assertion,

we use the configuration of the skeleton to predict the shape of the deformed object.

5.2.1 Blended Local Linearization

Our first approach is to divide the object into regions, each of which can be simulated using the
linear strain model. Each region is associated with a bone of the skeleton. The idea is to use the
transformation of the bone to predict the rotation of the region, and linearize about the predicted
rotated state similar to the scheme presented in Section 4.3.

The user divides the object into regions by assigning weights to the control vertices, forming
a partition of unity over the object. A piece of the object can belong to a single region or can be
divided fractionally among several regions. We encode the region weights in the function W (b, i),
which returns the weight of vertex ¢ in region b. The lower right image in Figure 5.3 shows a
partitioned object, colored according to the region assignments, Our current system requires that
the user manually set the weights for each control vertex .

From the region assignments we form a cell complex K corresponding to region b. The cell

complex K contains the cells of X whose vertices all have positive weights for region b:
Ky, ={Ce K:Viev(C), W(b,i) > 0}, (5.7)
where v(C) is the set of indices of vertices of cell C. Each region has an associated function space
By = {(f)i’[{l, (i € B, (b'éivsz # 0}, (5.8)

where ;| %, denotes the restriction of ¢, to Kj,.

Because each basis function is associated with a unique control vertex, there is an injective map

'A more intuitive painting interface would be a better way to assign region weights. 1t would also be helpful to
automate the task of region assignment (the work of Li et al. [47] may be adaptable to our problein domain).



from By, to B. In order to perform local computation within each region, we renumber the vertices
within each region to have indices in the range 1,. .., NV}, where N} is the number of vertices in K.

Let the function i(b, ) map the i-th vertex of K’ to the corresponding vertex of K.

The pseudocode for taking a single simulation step is:

Algorithm 5.1: Simulation Step for Blended Local Linearization

1 foreach region b do
2 for i «— 1 t0 Nydo
e .
q'ﬁr’ — R, (ré(b,?‘,) + Q05 — cb,i(b.i}) ~Tib3)

W
5

- joqi.(b;{)

end

3 Solve for Av?® using Equation (4.5) and inputs q” and ¢°
Av 0

4 for i «~— 1to N, do

Avyy g« Avig s + RyW(b, (b, i)Aave

end
end

5 q<=q+Av
6 q<=q+hg

The main loop that begins at line 1 computes a Av? for each region and merges them into a
global Av. First, at line 2, q and q are converted to the local coordinate frame of the region, and
placed into the vectors ¢ and ¢°, which are indexed using the local indexing scheme for the region.
Note that Ry is the rotation of the bone from Equation (5.1), and € ; are the coefficients of the bone
translation from Equation (5.2). Line 3 then solves the dynamic equations from Equation (4.5),
ignorant of the fact that the computation is in a local frame. The result is a Av® for the region, in its
local frame of reference. The loop at line 4 merges Av? into the global solution Av by transforming
the coordinate frame, applying the region weights, and mapping regional indices to global indices.
The state of the global system is updated in lines 5 and 6.

The blended local linearization scheme produces much better results than pure linearization. A

character can be posed in a variety of configurations without gross distortions occurring. However,



Blended Local Linearization

6 = 90°

Skeletally Warped Linearization

Figure 5.2 Comparison between blended local linearization and skeletally warped lin-
earization. On the left is a simple object at rest, instrumented with a skeleton having a
single joint in the middle. For each of the schemes, the joint has been posed at 90° and
135°. On the top row are the results using blended local linearization. Notice how the re-
gion near the bend unrealistically contracts, similar to traditional skinning methods used in

animation. On the bottom row are the results using skeletally warped linearization, which
look much more plausible.
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the method fails to produce pleasing results in the areas where regions overlap, as can be seen in
Figure 5.2. In such regions, the resulting static equilibrium states resemble the results of traditional
skinning; near joints, the body becomes unrealistically narrow. The procedure introduced next

eliminates this problem and offers additional benefits.

5.2.2  Skeletally Warped Linearization

We will now introduce a method that builds on the work of Miiller et al. [57], in which %%- is lin-
earized independently in the neighborhood of each vertex. In their scheme, an estimate of rotation is
computed from the displacement field at each vertex. The rotation is used to linearize the neighbor-
hood of the vertex. Their technique produces pleasing deformations without the gross distortions
that accompany traditional linearization, but we have found it to suffer from some instability due to
its inherent nonlinearity (the linearization is a function of the current configuration of the body).
Our method borrows from Miiller et al. [57] the idea of performing the linearization inde-
pendently at each vertex, but differs in how the linearization is performed. Our method is fast,
stable, and free of gross distortions. A major advantage of our technique is that it results in a
pose-dependent linear system: the system is linear for a fixed configuration of the skeleton. Pose-
dependent linearity makes it computationally inexpensive to perform dynamic simulation or com-
pute static equilibriom solutions given external forces (we will use such solutions later in this work
to perform interactive optimization). In contrast, solving for static equilibrium using the method of
Miiller et al. is a nonlinear problem. A second advantage is that since we predict both the rotation
and translation of the body (Miiller et al. only estimate the rotation), our potential energy need not
be translation invariant (in Section 5.3 we add an important translation-dependent potential).
Before discussing our method in detail, it is worthwhile considering the special case where at

time # the pose parameters (t) induce a rigid motion of the skeleton S, say
T(x) = Rx + ¢(x),
where R is a rotation matrix and ¢(x) = ¢ is a translational displacement field. We may then write

x+d(x,t) =R (x+d(x.1)) + ¢c(x),
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where d is the displacement of the object relative to the transformation of the skeleton. The mapping
p : © — B3 will be an approximately rigid motion (and therefore have small elastic energy) if and

only if d is small. Writing
N

d(x,t) = Zﬁ-ﬁ(t) $i(x),

‘l‘..;‘:.:l
expressing [/ as a function of §, linearizing U about § = 0, and reverting back to the original
generalized coordinates q, gives the following approximation for %% which we will refer to in the

future as Q°:

N
Qf = YRS, (R0 40y - &) ~x,) 9
j=1
where
N
c(x) =D _ & ¢;(x)
j=1

is the expansion of the translation ¢(x) against the basis B. Substituting Equation (5.9) (via Equa-
tion (5.4)) into Equation (5.6) gives a linearization which can be used to compute g at time ¢ + At.

In general, however, the pose parameters «v will deform the skeleton, and the transformation
T(x) will, therefore, depend on «. In this case, our approach is to use a skinning methodology to
predict T'(x).

Recall from Equation (5.1) that «x(¢) determines a set of mappings that position and orient each
bone By, in R3. We associate each vertex x; of K with two bones of S, denoted B;; and B;» and we
let

Ti(x) = Rix +¢;,

where R; = w1 Ry + wipRis and ¢; = wyiciy + wiacia. The user-defined weights w;y, dictate how
much each bone affects each point. The sum in the formula for R,; is shorthand for interpolation
of rotations. In our current implementation we allow only two nonzero weights so that spherical
linear interpolation can be used. More general methods are available for blending more than two
rotations, at higher computational cost [1, 16]. We note that the idea of using skinning weights to
blend rotations comes from [3].

We use the mapping T'; to transform each vertex in a neighborhood of x; before computing the

elastic force:
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N
Q¢ = Z RiSi; (RY (xj +a; — &) — x;)
je=1

The generalized elastic force for a free variable is then

Ng

s

(Q(f“)f = Z thee(f)(SFS)fs (R};ee(f)(xsk@[(ﬁ) + (qk‘.?)s = 6ﬁ'¢e(f),skel(3)) - Xskcl(g))
gzl
Np
+ 3 Ry (S ) g (R}’;}e( N Xpree(gy + (@r)g = Cpee(s) pree(g)) — xﬁ*ee(g)) . (5.10)
g==1

Noting that Equation (5.10) is linear in g, and that R; = R;(a(t)) and ¢; = ¢;(a(t)), one can
see that substituting Equation (5.10) into Equation (5.6) results in a pose-dependent, and thus time-
dependent, linear system in gp. The resulting system is positive definite but no longer symmetric,
so we solve it using the bi-conjugate gradients algorithm [65].

The results of using skeletally warped linearization are shown in Figure 5.2. The resulting defor-
mations near joints are clearly more plausible than those produced by the blended local linearization

scheme.

5.2.3 Smoothing Trilinear Deformations

It was mentioned in Section 5.1 that either the trilinear basis or the MLCA subdivision basis can
be used in the presence of skeletal constraints. The trilinear basis functions have the advantage that
they have smaller support than those of the MLCA scheme, so the system is sparser, leading to
faster computation. The MLCA basis has the advantage that the deformations are mostly smooth?,
whereas trilinear deformations have unappealing creases.

Our linearization scheme assumes that within the support of a basis function the body has un-
dergone a constant rigid body motion. We found that this caused excessive distortion when smooth
basis functions were used on a coarse basis, but we wanted a coarse basis to maintain interactivity.
We therefore chose to use MLCA basis functions when reconstructing the state of the object for

display, but trilinear basis functions for computing the dynamics. We factor in the smooth recon-

2The MLCA scheme is provably smooth everywhere except at extraordinary vertices, where it is not known if the
scherme is smooth, but there is evidence that it is [8].
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struction when computing the effects of constraints on the surface so that constraints are met exactly

in the presence of smoothing.

5.3 Bone Displacement Energy

In natural creatures with three-dimensional bones, the flesh cannot twist (i.e., rotate) around the axis
of the bone without causing the flesh to deform. Such deformations are resisted by emergent elastic
forces, so the twisting is limited. But flesh can rotate about a line constraint without deforming. To
avoid such unnaturally free movement, we introduce a potential energy to penalize all displacement
(not just deformation) within a fixed radius of the bones. We denote this region Qg C Q. The

following potential describes the constraint:

UP = % A d(x) d(x)dV . (5.11)
2 Ja,

The above potential is quadratic, so its Hessian is simply a constant matrix:

HUs

()qz an =1 / ¢7(x qj,] ) (5‘]2)

where I is a 3 x 3 identity matrix. The above constraint must be computed in the frame of reference

of the rigidly transformed bone, which fits well into our bone-relative computation framework.

5.4 Ipstrumenting Characters

Prior to simulation, a model must be instrumented with a skeleton and control lattice. Although
automated skeleton construction has been addressed by Teichmann and Teller {77], we let the an-
imator specify the skeleton in order to achieve the desired level of control. We have implemented
a simple system that allows a skeleton to be constructed manually in just a few minutes. The user
creates a joint by clicking on the object with the mouse. If the ray through the mouse point (from the
camera projection center) intersects the object at least twice, a joint is placed midway between the
first two intersections. This positioning scheme produces joints that are centrally located inside the
object. The joints can then be dragged and dropped for final positioning. Two joints can be selected

to define a bone, and with the selection of a root joint, a transformation hierarchy can be created
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automatically.

We currently use a constructive procedure that allows the user to build the control lattice interac-
tively by adding cells incrementally and repositioning the control vertices as needed. Several hours
are required for an experienced user to create a moderately complex control lattice. The abundance
of volumetric meshing schemes suggests that automatic creation of the control lattice is possible,
and we hope to address this problem in the future. Figure 5.3 shows the skeleton and control mesh

for a kangaroo model.

5.5 Results

We applied skeleton-driven deformation to two meshes: a cow and a kangaroo. Both were freely
available on the Internet. The control lattice for the kangaroo model has 448 cells and 177 vertices;
the cow control lattice has 572 cells and 214 vertices. On a 1 Ghz PC, both the cow and kangaroo
animated at about 100 Hz using only the coarse basis functions, which is clearly within range for
interactive applications (with adaptation, simulation time varies depending on the degree of adapta-
tion required). Figure 5.4 shows frames of an animation of the cow model (using the coarse basis),
which demonstrates the ability of our system to handle variable material properties; the ears flop
around realistically while the horns stay rigid. Our system is able to produce plausible interactive
simulations for bodies with varying material properties because the control lattice can be carefully
crafted to respect material boundaries, and because our integration over the body takes variable

material properties into account.

For our datasets, the blended local linear and global linear solutions required about the same
amount of computation time. Yet the blended local linear solution produced much more pleasing
results, as demonstrated in Figure 5.5. The blended local linear solution looks similar to the fully

nonlinear solution, while the global linear solution is badly warped.

The results presented here were produced using blended local linearization because skeletally
warped linearization was developed later. We presented both schemes in this chapter for clarity.
The improvements offered by the skeletally warped linearization scheme were needed by the work

presented in the following chapter, which uses that scheme exclusively.



Figure 5.3 The upper left image shows an input model that has been instrumented with
a skeleton. A coordinate frame is visible at the base of each bone for which a region is
defined. The upper right image shows the model embedded in a control lattice (only half
of the control lattice is drawn). The lower left image shows how the skeleton coincides with
edges and vertices of the control lattice. The lower right image shows the entire control
lattice in wireframe, as well as the division of the object into regions for local linearization.
Each region is associated with one of the local coordinate systems in the upper left irage.
Note the color blending where regions overlap.



Figure 5.4 Frames from an interactive animation. There is no noticeable warping due to
strain linearization, and the different materials (e.g., ears, horns) behave distinctly.

Figure 5.5 On the left is the global linear solution, which shows significant warping when
the cow turns its head to one side. In the center is the fully nonlinear solution. On the right
is the blended local linear solution, which shows no noticeable warping of the head. A
slight protrusion can be seen in the neck of the right image due to region blending.
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Summary

The techniques presented in this chapter demonstrate that interactive character animation can be
achieved in an elastic deformation setting. Skeletal constraints provide the kind of skeletal control
that animators already use heavily. Bone displacement energy makes the one-dimensional bone
constraints produce an effect more like three-dimensional bones. By linearizing the strain in a
bone-relative way we achieve interactive simulation rates with high quality deformations. In the
next chapter we provide additional control mechanisms that further mitror the control paradigms in

current use in animation.



Chapter 6

SHAPE CONTROL USING FORCES

The system presented in the previous chapter produces skeleton-driven character animation at
interactive speeds. But it lacks the power of traditional animation systems to allow detailed shape
control, because control is limited to the configuration of the underlying skeleton. Shape control
is important because it enables the animator to create more realistic deformations and express the
emotion and intent of a character. For exarnple, skeletal controls will not effectively help the an-
imator to make a character appear to breathe, produce a muscle bulge, or smile. To address this

shortcoming, we introduce an additional control mechanism.

Since our framework is based on physical simulation, two natural mechanisms exist for influenc-
ing the shape: hard constraints and forces. Forces (or force fields) are better suited to our framework
for a variety of reasons. First, hard constraints are rigid by definition, which is not a realistic model
for any animal tissues other than bones (which we already model using hard constraints). Forces
on the other hand can influence the shape without destroying its dynamic nature, Another reason
that forces are more appealing is that they can be easily included in our simulation framework (via
Equation (3.6)). Additionally, forces can coexist without troublesome compatibility issues; if two
force fields overlap, their effects are simply summed. Finally, force fields need not line up exactly
with the character’s surface geometry. Our framework already handles the embedding of the char-
acter; if the force field extends beyond the interior of the character it can simply be restricted to the

interior.

In choosing to use forces to effect deformations, we take advantage of a subtlety of constrained
linearized elasticity. For a fixed skeletal pose, deformations and generalized forces are in correspon-
dence due to pose-dependent linearization. Consider the body in static equilibrium. If we substitute

Equation (5.10) into Equation (5.6) and apply the conditions of static equilibrium, ¢ = Oand q = 0,



the resulting system is of the form
Ala)qr =b(a) + Qr, 6.1)

where A(a) is a Np x Ny invertible matrix containing 3 x 3 blocks, and b(«) is an Np-vector
with elements that are 3-vectors. Since A(cv) is invertible!, it creates a bijective linear map: every
generalized force Qp has a unique corresponding displacement ¢y, and vice versa. This relation-
ship is key to our approach to rigging; it allows us to think about shape in terms of forces. While our
simulations are dynamic, the rigging is configured while running a static equilibrium solver (i.e.,

solving Equation (6.1)), where forces and displacements are in correspondence.

6.1 Overview

Recall from Chapter 5 that we control the animation of a character using a vector of pose parameters
a(t). We introduce an additional vector of abstract parameters B(t) = (B1,Ba, ..., Bn,) € RN,
The pose parameters and abstract parameters can be combined into a single vector of control pa-

rameters

O = ((111,()&2,...,Ome,ﬁl,ﬁg,... ,ﬁNJ) = (91,92,,..,91\]9) € RNK)’

where Ng = N, + Ng. The components of 3 serve as general-purpose shape controllers. For
example, one such parameter value could be named raised left eyebrow and be expected to change
the shape of the character appropriately. The animator may then implement the raising of the left
eyebrow via a curve 3(t) in parameter space. An animation of the entire character is created by
varying the control parameters G(¢) over time.

The parameters © affect the shape of the character through objects that we call rigs (a variation
on standard animation terminology). Each rig maps the control parameters to a force field acting on

the body. The collection of all rigs on a character is thus modeled by a continuous family £€(x, ©)

'"The skeleton must provide a sufficient number of independent constraints in order o ensure that A (ex) is invertible.
For example, in the unconstrained case, displacements that produce infinitesimal rigid motions all correspond to zero
force. The skeleton must then constrain at least the six rigid degeees of freedom of the body. Any skeleton having at
least two bones not on the same line will satisfy this condition. We can also check the determinant of A (ex) in the rest
configuration of the skeleton (e = cvp) to ensure that it is invertible. If A (o) is invertible then A (o) is invertible for
all ¢x because the rotations introduced in Equation (5.10) do not change the rank of A,
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of force fields on €. Notice that we allow all of the clements of © to affect the shape, not just
the elements of 3. This allows the pose to atfect the deformation, which is useful paradigm in
animation. In particular, anatomical features of the shape such as muscle bulges are often pose

dependent.

The remainder of this chapter discusses the rigging process, by which the mapping £© is con-
structed. We present two independent paradigms, based on two kinds of components: force field

templates and surface deformation rigs.

Force field templates, which we will also refer to as force templates or simply templates, are
reusable components representing parameterized force fields in a canonical coordinate frame. At-
tachment of a force template to the character is facilitated by a template guide, which simplifies
the positioning and orienting of the template. Examples of force templates are presented in Sec-

tion 6.4.1, and template guides are discussed in Section 6.4.2.

Surface deformation rigs (hereafter referred to as surface rigs) are rigs constructed from surface
deformations. This gives the user more control by leveraging existing technologies such as surface

scanners and geometric modeling software. Surface deformations are presented in Section 6.5.

The next two sections discuss how rig forces are simulated (Section 6.2), and the process of

rigging a character (Section 6.3).

6.2 Simulating Rig Forces

The displacement of the character must be taken into consideration when applying the rigging force.
For example, if the force is simply applied in the global frame of reference, a force effecting an
outward surface bump would cause an inward dimple to form when the character is rotated by 180°.
The force can be evaluated relative to the current state of the object by multiplying by the Jacobian
of the current position. The formula for computing the generalized rig force is then

" Ip

QPJ(G‘)) == /Q ()z f@ (X, ("9) (/’Jj”()(/) (X) dv .

.



To reduce computation, we make the simplifying assamption that in the neighborhood of vertex ¢,

‘gg ~ Ri(a) (recall Equation (5.1)). The resulting approximation of the generalized rig force is

QF,f(@) R wa'ee(f)(a) L f@(xs @) ‘/Sfre:e(f)(x) dv’.

Using the above formula, we integrate the rig forces in the rest state of the character and then use

the rotations R;(cx) to apply the generalized force to the object in its current state.

6.3 The Rigging Process

In order to rig a character, individual rigs must be configured and combined to form the rigging
force £ (x, ©). Each rig is described as a force £2(x, n;), where n; is a vector of rig parameters
that determine the force produced by the i-th rig. The rigging process consists of deciding on a set
of rigs and creating a mapping from © to n, for each rig. For simplicity, we impose the restriction
that the ¢-th rig depends on a single control parameter v; € ©. The rig force is then formed by

combining the force contributions from the rigs:
Nrigs
£9(x,0) = Y £(x,7i(n)), (6.2)

=]

where the function 7; : v; — 7, maps the control parameter associated with rig ¢ to its rig parame-

ters. It is also convenient to express the rig force purely in terms of generalized forces:

N-ri g3

Qr(0) = Rr(e) ) Q'(w), (6.3)
fu]

where Q7 is the generalized force (on the free variables) contributed by the i-th rig, and Rp () is a

diagonal matrix comprised of 3 x 3 blocks, with Rz pr(c¥) = R pree(p) ().

We represent the function 7; as the Jinear interpolation of a set of sample points {{v; 1,7, ) :



k=1,2,...,N7, %ir < 7iwsir that are created by the user during an interactive session:
3y i Vi, Yik+1,

70 for v < i
Til%) = i+ Migprs — M) (%) for vige <% < Yig+1, 1 <kE<NT

;N7 for Ny <7

The process by which the user interactively rigs a character can be described algorithmically as

follows:

Algorithm 6.1: The Rigging Process

71

while the character is not fully rigged do
instantiate rig ¢

choose a control parameter v; € © for the rig
k1

while the user desires more samples do

1 configure the character by setting ©
2 set the control parameter 7y; <« 7; k
3 configure the rig by setting 17, < 1,

record the sample (v; %, 1; &)

ke—k+1
end

1 i+ 1
end

6.4 Rigging with Force Field Templates

Our first approach to rigging is to rely on a library of predefined force field templates. Each template

defines a parameterized force field in a canonical coordinate frame.
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6.4.1 Examples of Force Field Templates

Before describing specific force templates that we have implemented, we will enumerate the design

goals that guided our selection:

L

A force template should produce an effect that is easy for the user to understand.

L ]

It should have few control parameters so that the user and optimizer (Section 6.4.3) can easily

configure it. The parameters must be intuitively meaningful to the user.

It should be continuous and have continuous first derivatives so that changes in the parameters

produce smooth changes in the forces.

It should be spatially localized and have a simple closed form so that it can be evaluated and

integrated efficiently to compute generalized forces.

We provide two examples of force field templates that were designed with the above goals in
mind. The first example is the bump template, paralle! to the y-axis and supported on a ball centered
at the origin:

f(x, 4, R) = AB(|x||, R)¥ ,

where

1 1 T
=+ zcos(Z) forlrl< R
B(r,R) = 202 (R) I

0 otherwise,
and ¥ is a unit vector in the direction of the y-axis. The parameter A controls the magnitude of the
force, and R controls the radius of the support of the force field.

The second example is the bulge template, which is inspired by the behavior of a muscle.
Roughly speaking, when a muscle contracts in one direction it expands in the other two direc-
tions (see, e.g., [70]). The bulge behaves similarly. Contraction along the x-axis is coupled with
expansion in the yz-plane. The bulge is defined by the formula

73

£(x, A, R) = Acos(20)B ([]x“ R ‘R‘) }"‘ , 6.4)

where ¢ is the angle between x and the positive x-axis. The magnitude of the bulge is again con-

trolled by A and its support is the ball of radius R. The factor cos(26) creates a smooth transition
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between expansion and contraction as the point x varies from the z-axis to the yz-plane. The func-
tion B is scaled and shifted so that the force vanishes at the origin.

In addition to the two aforementioned templates, we have implemented two others whose details
are omitted for brevity. The radial template is supported on a ball. Its forces point away from the
origin, modulated by B. The torus template is supported on the interior of a torus. Each circular

cross section of the torus contains forces radiating outward from the center of the cross section,

6.4.2  Template Guides

When a template is applied to a character, it must be positioned and oriented. To simplify this task
we introduce template goides. Each template guide supports a unique user interface which allows
the user to easily position and orient the template. The six degrees of freedom of position and
orientation are reparameterized and divided into three categories by the template guide. Some of
them are configured automatically as the user drag-and-drops the template. Some are eliminated.
The remaining DOFs can be configured using sliders if desired. By reducing the degrees of freedom
of position and orientation, we also ease the workload on the optimizer during optimization-driven
rigging (Section 6.4.3).

Bone guides position and orient the template relative to a bone of the character. When the user
drags a bone guided template with the mouse, the template is positioned at the closest point on the
skeleton to the mouse ray, and oriented so that its coordinate system aligns with that of the bone
(with the z-axis along the bone). Once positioned on a bone, the template has two positional DOFs:
slide — the location along the bone, and orbit — translation along the local y-axis away from the
bone. It has one rotational DOF: spin — orientation around the bone. These three DOFs are available
to the optimizer (Section 6.4.3).

Skin guides position and orient the template with respect to the skin of the character. When the
user drags a skin guided template with the mouse, the template is positioned where the mouse ray
intersects the surface, and oriented so that its local y-axis is in the direction of the surface normal
(the other axes are set arbitrarily but consistently). Once the template has been placed on the surface
of the character, it has one remaining positional DOF: depth — translation along the surface normal,

and one rotational DOF: spin — rotation around the surface normal.
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Free guides can be used when the other two template guides are too restrictive. They allow
complete positional and rotational freedom. When the user drags a free guided template with the
mouse, the template moves perpendicular to the mouse ray. Its orientation can be set arbitrarily

using sliders.

When a force field template is combined with a template guide, together they form a rig, pro-
ducing a force of the form given in Equation (6.2). The rig parameters n are a concatenation of the
template parameters (such as A and R) and the template guide parameters (such as slide and spin).
The user is required to configure the rig at line 3 of Algorithm 6.3. This is done by manually setting
the template parameters, drag-and-dropping the template according to the chosen template guide,

and manually adjusting the remaining position and orientation DOFs if desired.

6.4.3 Optimization-Based Template Configuration

Although force field templates are designed to be simple and intuitive, and we simplify their place-
ment using template guides, it is not always easy for the the user to understand which parameters
to change to achieve the desired effect. For this reason we also support an interface wherein the
user directly manipulates the surface of the character with the mouse and the system automatically

optimizes the parameters of the rig so that the forces cause the surface of the character to conform

to the users input.

Consider the static equilibrium equation where the pose is fixed and a single rig is involved:

Agqr =b+RpQpr(n), (6.5)

where 7 is the vector of rig parameters (the index ¢ has been omitted since we are assuming the
presence of only one rig). Using a drag-and-drop interface, the user indicates target positions
P, P2, - - .. Dye for the points p1,po, ..., pae on the input surface I'. Our goal is to choose i

so that these constraints are met. This is accomplished by minimizing the cost function

C(") s QF) = Gpoints(ﬂf’) + Gpamms(n) )
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Figure 6.1 This cow head was interactively rigged using force field templates to create
simple facial expressions. The templates are visualized as green objects in the top row of
figures. The figures in the bottom row show the resulting deformations. On the left, two
bump templates were used to create a smile. The red lines indicate the direction of the
bump force. In the center, four bump templates effect a frown. On the right, two torus
templates allow the dilation and contraction of the nostrils.

where

NP
Cpomr.s(qF) = Z ij - fjj |2
J=1

enforces the constraints, and

N7
Gpamms('n) = Z & (7)0,.7 - "b‘)z
F==1

penalizes deviation of 7) from its preferred value 1. The weight £; determines the magnitude of the
penalty associated with the j-th parameter.
We optimize the cost ' using the L-BFGS-B algorithm [17], a quasi-Newtonian solver with

limited memory usage. Standard optimization methods for smooth cost functions, like L-BFGS-B,
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require knowledge of the gradient %% Computing it directly using finite differences requires €' to
be evaluated once for each element of 1) and leads to a prohibitively slow optimization. Instead, we

expand the gradient using the chain rule and regroup as follows:

aw _oc o0 dar
dn  dn  Oqp dn
=90, 00 (h-1R, 1Qr
on  oqr dn
L
n dqr dn

Qg

Both % and 2% have simple analytic forms, but i

n Bqr

(3.6) ) and is difficult to compute analytically. We therefore use finite differences to compute dQn ,

which requires one integration over the body per element of 1. The important gain in efficiency

requires integration over the body (Equation

comes from the regrouping involving A~!, After regrouping, rather than solving a linear system
for each element of 7, we need only solve one. This results in much faster optimization. Using
this method of computing the gradient we were able to achieve interactive optimizations in the case
where a single rig is being configured. Figure 6.1, shows the result of interactively rigging the head

of a cow with force field templates.

6.5 Deriving Rigs from Surface Deformations

In addition to the predefined force field templates introduced in the previous section, our frame-
work supports surface deformation rigs, which are constructed directly from surface deformations.
This gives the user more control by leveraging existing technologies such as surface scanners and
geometric modeling software.

A surface deformation rig uses an arbitrary generalized force to effect the desired shape change.
We express the force of a surface deformation rig directly in the generalized form of Equation (6.3),

dropping the index i since we will only be discussing a single rig:

Qy) =m. (6.6)

For surface deformation rigs, the rig parameters 77 determine the direction of the generalized force
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and the rig control ~ determines its magnitude. When using a surface deformation rig, line 3 of
Algorithm 6.3 is performed by computing the optimal parameters 77 so that the target surface is
matched.

Given a target surface T represented as a triangle mesh, we want to compute a generalized force
such that T' & I", where I" is the surface of the simulated body at static equilibrium. Because I also
depends on the skeletal configuration parameters o, which are unknown for the target surface, we
must also compute an optimal skeletal pose. This computation replaces the user interaction at line 1
of Algorithm 6.3. Our approach to optimizing the skeletal pose is based on the work of Allen et al.

(3].

6.5.1 Pose Optimization

Our procedure for pose optimization is based on matching a set of user-selected feature points {p;}

on T and {P;} on T using the following cost function:

N fentures

Z ‘pk - ﬁk:‘Q 3
k=1

Cheatures(0t) = m

where Nfeaures is the number of feature points. Although it requires user interaction, the selection
of feature points by the user has the advantage that points can be chosen that are representative of
the configuration of the underlying skeleton, such as places where the bone is close to the surface.
As before, the L-BFGS-B algorithm is used to solve for the optimal pose parameters «. Figure 6.2

shows the results of optimizing the pose to fit a target surface.

6.5.2 Force Optimization

After finding the optimal skeletal pose associated with T', and setting the value of 72 (line 2 of
Algorithm 6.3), we compute the optimal generalized force (via 7) that aligns the deformed surface
I" with the target surface I'. Our goal is then to find a vector 1 that minimizes the following cost
function:

0(77) =z Csurf (71) + WCsmooth (77) )

“Recall that v € © == o U B. If = is chosen to be a pose parameter (i.e., v € «v), it has already been set during pose
optimization. If it is an abstract parameter (i.c., v € @), then it is typically set to 1.
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Figure 6.2 In this example, a skeletal pose is computed that deforms the gray surface to
fit the blue surface. The gray body is a physical simulation constrained to the motion of the
skeleton. The red spheres indicate user-selected feature points that guide the optimization.

where w is a user-specified smoothing parameter. The first cost term penalizes mismatch between I

and T

7
N Vers

N 2
verts 4o

Oswf(”l) = di~9t(vk,—f)2 ,

where Nyeqs is the number of vertices in I', {vy,vy,...,Vy,,, | ate the vertices of I', and dist
measures the minimum distance between a point and a surface. The second cost term encourages

smoothness of the displacement field d(x):

2av,

3
1
Csmooth("?) = ’2‘ § / Ilec

where dj is the k-th component of d(x). The cost function C is a function of 1 by virtue of
Equation (6.5), which draws a correspondence between qp, the state of the character, and Qr(n),
the rig forces acting on the character.

If the deformed surface T is created by a connectivity-preserving edit of the original surface, we
can use a simpler version of Cy,, that takes advantage of the correspondence between vertices:

Nyerry
1 y -
G«'mf("’) = N E ‘Vﬂ? b Vk[2 s
k==l

VEFLs

where {¥1,¥a, ..., V., } are the vertices of I,
In some cases, we would like to match surfaces that are not expected to match at every point.

For example, we may want to match an isolated arm to an arm belonging to a full human body. In
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Figure 6.3 A surface deformation rig for a bent arm. (a) A scanned arm in its rest con-
figuration. The arm has been instrumented with a skeleton and control lattice for elastic
simulation. (b) The target surface, which was also acquired by scanning. We want to com-
pute the forces that approximately produce the target surface when applied to the simulated
arm shown in (a). (c) The static equilibrium shape of the arm in (a) posed to match (b) as
well as possible. (d) A comparison between (b) and (¢). (e) The bent arm after applying
an optimized surface deformation rig that uses forces to produce the target shape. () A
comparison between (b) and (e).
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Figure 6.4 This figure illustrates how the rig from Figure 6.3 can produce deformations
for other poses by interpolating the forces. The top row shows the simulation without
rigging for three different poses. The bottom row shows the same poses simulated with
rig forces in effect. Notice that the biceps and the area around the crease of the elbow are
much more realistic looking when the rig is used.

cases like this, a lasso tool is used to select the vertices on I' that are expected to correspond with T,

In this case we modify the cost function to only include the selected vertices.

Figure 6.3 shows the results of creating a surface deformation rig to match a bent arm. Because
the deformation is associated with the arm in a bent pose, we chose the angle of the elbow joint
as the control parameter v associated with the rig. As vy varies from 0 to 1 the force that effects
the deformation is gradually introduced. In this manner, intermediate poses of the elbow produce
intermediate deformations. Figure 6.4 shows the effect of the rig when the arm is posed differently

from the pose of the target data.
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6.6 Adaptive Rigging

To make surface deformation rigs match the input surface better, we can increase the resolution of
the control lattice. But doing so greatly increases the computational cost of the simulation. We
therefore apply the adaptive simulation procedure that was introduced in Section 4.7. Some changes
are required to the basic method in order to adapt to the rigging effectively.

The adaptation of Section 4.7 increased the resolution of the simulation where the magnitude of
deformation is high. But for surface deformation rigs the goal is to match the input surface, so the

adaptation should operate accordingly. We break the problem into two steps as follows:

1. adapt the basis during the optimization of the rig forces, and

2. introduce the appropriate basis functions when the rig is activated.

Step 1 is implemented using the following algorithm:

Algorithm 6.2: Adaptive Rig Optimization

optimize Q as in Section 6.5.2

for k «— 10 Nyens do

1 if dist(vy,I') > e then

! activate all level [ basis functions that support vy,

end
end

end

The quantity ¢ in Line 1 represents a user-defined distance threshold. As in Section 6.5.2, if the
surfaces are in correspondence the expression dist(vy,I') in Line 1 can be replaced by |vj — V).
The result of Algorithm 6.6 is that the i-th surface deformation rig has an associated basis B that
supports the approximation of the input surface that was used to create the rig. Step 2 is performed
by setting B4 « B4 U B' whenever the i-th rig is active (7; # 0). If the rig is not active, basis

functions may be deactivated according to the procedure discussed in Section 4.7.
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6.7 Retargetting Surface Deformation Rigs

Deformed surfaces can be difficult to construct, and sometimes a deformation is available for one
model but not for another similar model. For these reasons we would like to transfer rigs between
characters. In this section we discuss the transfer of surface deformation rigs from one character to
another. We accomplish this by creating a mapping between the two characters and then using the

map to transfer forces.

6.7.1 Optimal Mapping

Suppose that we have a character whose domain is  with surface I' = 0€ and skeleton &, and that
the character has been parameterized by a cell complex K in the manner described in Chapter 4,
i.e., there is a homeomorphism r : K — D €. Our goal is to create a mapping from € to a new
character € with surface T' = 8} and skeleton S. We approximate such a mapping by repositioning
the vertices of the control lattice to form a homeomorphism ¥ : K — Q > € using the trilinear

basis. We can then form a trilinear mapping between the characters as follows:

h:0-Q: xe-Fri(x).

Our goal is to choose T so that h(Q2) ~ Q

We reposition the vertices of K using an optimization procedure that minimizes a cost function

of the form

C(h) = th’kelavkvl(h) + Weyrf CZ?urf (h) + Cdismrl(h> : (6.7)

The first term encourages the skeletons to match by penalizing the difference S ~ h(5%). The second
term (defined in Section 6.5.2) matches the surfaces by penalizing the difference I’ — h(I"). The last
term penalizes distortion in the mapping. The user defined weights wg and wy,r determine how
much each term contributes to the total cost. For efficiency, and to avoid local minima, we perform

the optimization in four stages.

In the first stage, we attempt to find a good starting guess for our (nonlinear) optimization pro-
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cedure. We grossly align the models by minimizing the cost function
AL
Ci(h) = Cya(h) = ™ g’;lbi —byf* (6.8)

while allowing the lattice only seven degrees of freedom for translation, rotation and scale. Here by,

and Bk, 1 < k < Ny, denote the vertices of S and S respectively.

In the second stage, we allow deformation to occur and attempt to match up the skeletons while

minimizing distortion of the mapping. We accomplish this by minimizing the cost function
OZ(h) = Cske((h) + Cdismrt(h) .

Our distortion penalty was chosen to be scale, rotation, and translation invariant:

N,
I (
Caorr(B) = 5= > ok = @)*,
a

k=l
where ag and @, 1 < k < N,, are the set of face angles in the cell complexes, K and K, respec-
tively, as embedded in R? by the mappings r and F. Each face angle measures the angle between

two edges of the lattice that belong to the same cell and have a vertex in common.

In the third stage, in addition to the skeleton, we attempt to match the surface. Instead of match-
ing the whole surface, we begin by matching user-selected feature points using the cost function
C3(h) = Cy(h) 4+ wiCleumres(h). This stage, the only one that requires user interaction (to select

the feature points), is optional but drastically speeds up the optimization.

In the fourth and final stage we match all of the surface points, instead of only the featare points,

using the cost function of Equation (6.7).

Due to the coarseness of the cell complex K, the above procedure does not usually produce a
perfect answer. In difficult areas, such as underarm creases, it is necessary to manually adjust a few

control points to ensure that the surface is properly embedded in the subdivided solid.
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6.7.2  Force Transfer

Once the mapping h from 2 to £ has been established, we can use it to transfer a generalized force
Q (or 7, recall Equation (6.6)) from ) to §). Transferring the generalized forces directly between
different physical systems produced unintuitive results, so instead we convert the generalized forces
to displacements, transfer the displacements, and then convert back to generalized forces. In doing
so we take advantage of the fact that our pose-dependent linear system draws a correspondence

between generalized forces and displacements.

Consider a generalized force Qp acting on the character whose domain is . We can convert
it to a displacement d by first applying Equation (6.5) to compute the generalized coordinates q
and then applying the basis expansion in Equation (3.4). The laws of vector transformation (see,

e.g., [5]) dictate that the transformed displacement d satisfies the equation
d(%) = J(x)d(x).
where J(x) = %}% (x). We approximate this transformation by transforming the coefficients:

q; = J(x)q;.

Although h is not differentiable at x;, we can estimate J; at the vertex x; of the lattice by

computing the affine map that minimizes the energy function

N
EJ) = Z(Jieij - .éf(‘,j)2 , (6.9)
=1
where e;; and €;; are edge vectors surrounding vertex i in X and K, respectively, as embedded in
R® by r and ¥. If there is an edge between vertex ¢ and vertex j in K, then e;; = r; —r;. Otherwise,
e;; = 0. Minimizing Equation (6.9) reduces to solving a 3 » 3 linear system. The method of
computing an affine map by minimizing Equation (6.9) is commonly referred to as the Procrustes
algorithm [12, 40]. Once we have computed ¢fF as above, Equation (6.5) can be applied again to

produce the generalized force Qp for the target character.



Figure 6.5 Input surfaces for rig transfer: Ganesh (left) and Mean Man (right).

6.8 Results

Some of the results of our rigging system have already been shown in Figures 6.1, 6.3, and 6.4.
Two additional input surfaces that were used to test the system appear in Figure 6.5. The model
of “Ganesh” on the left was designed using geometric modeling software. The model on the right,
“Mean Man”, is the average of a set of scans of men (see [4]). The Ganesh character was instru-
mented with three rigs which were then transferred to the Mean Man character. One of the rigs
was derived from a third model, the arm scan demonstrated in Figures 6.3 and 6.4. Another rig,
representing the flexing of the chest, was derived from a surface deformation designed by an artist.
A third rig, effecting a breathing motion of the torso, was creating using a force field template?.
Figures 6.6 and 6.7 demonstrate the transfer of rigging between characters. In Figure 6.6, the
rig derived from the bent arm scan (Figure 6.3) has been transferred to the Ganesh character. It is
noteworthy that the thin human arm on which the rig is based and the Ganesh arm behave quite
differently when using the vnrigged model. The Ganesh arm is short, fat, and cartoon-like, so the
deficiencies of the simplified physical model are not as apparent as for the thin human arm as in

Figure 6.3 (¢) and (d). Despite their significant differences, the rig produces a similar effect on

¥This rig based on a force field template was transferred by sampling its generalized force and turning it into a surface
deformation rig of the form given in Equation (6.6). Tt was then transferced using the method described in Section 6.7.



Figure 6.6 The Ganesh arm with rigging transferred from the arm scan in Figure 6.3. On
the left is the unrigged arm (in a bent pose) and on the right is the rigged arm. On Ganesh
the rig causes similar effects as on the original arm model: the elbow extends, becoming
less rounded, and the biceps bulges).

the Ganesh arm as on the scanned arm. The biceps bulges in an appropriate place and the elbow
extends, counteracting an unrealistic contraction.

The transfer of a chest flex rig is shown in Figure 6.7. The chest flex rig was created using a
target deformation created using geometric modeling software. The target shape is shown in image
(f). The deformations that result from using the optimized surface deformation rig are shown in
image (b), using a coarse control lattice and image (e), using a finer control lattice (the coarse
control lattice subdivided once). Notice that as the control lattice gets finer, the resulting rig forces
produce an effect that is closer to the target surface. Images (h) and (i) show the effects of the chest
flex rig after having been transferred to the Mean Man character. It produces a plausible deformation
despite the fact that the characters are very different.

Figure 6.8 demonstrates frames of an animation in which all three rigs are in effect (although
only the chest flex rig is really noticeable in still frames). The animation in row (¢) uses 2 levels
of basis functions and produces a chest flex that is very much like the target surface. In row (d),
a belt constraint has also been applied, demonstrating that our system supports constraints along
with rigging. Although we have not done extensive timing studies, the cost of simulation is about
equally split between overhead (e.g., bookkeeping, rendering) and solving the sparse linear system

at each timestep.
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Figure 6.7 A surface deformation rig effecting a chest flex. (a) The undeformed chest
of Ganesh. (b) A chest flex using the coarse control lattice shown in (¢). (d) The chest
flex optimized for the finer control lattice shown in (e). (f) The target deformation used
to create the rig. (g) The undeformed Mean Man model to which the chest flex rig was
transferred. (h) The chest flex using a control lattice of the same coarse resolution as (¢).
(1) The chest flex using a control lattice of the resolution of (e).



Figure 6.8 Animations demonstrating a chest flex rig. (a) Animation with no force-based
rigging. (b) Animation using a chest flex rig optimized for a coarse control lattice. (¢)
The chest flex rig using a finer control lattice. (d) Animation using the chest flex on a fine
control lattice and a belt constraint.
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Figure 6.9 Adaptive simulation of the chest flex rig. (a) The surface of the control lattice
at rest. Red spheres represent active level 0 basis functions and green spheres represent
active Jevel 1 basis functions. Notice that outside the chest region the level 1 basis func-
tions are inactive. The active basis functions are being shown on the rest configuration for
clarity, although they were selected during adaptive optimization of the rig forces. (b) The
volumetric control lattice. (c) The chest flex resulting from adaptive simulation using the
basis functions shown in (a) and (b). (d) The target surface.

The use of adaptive simulation for rigging is dernonstrated in Figure 6.9. Notice that the result
of the adaptively simulated chest flex using 2 levels of basis functions (Figure 6.9 (¢)) is visually
identical to the non-adaptive simulation using 2 levels of basis functions (Figure 6.8 (d)). But the
computational cost of the adaptive simulation is significantly less. The adaptive simulation required
about 0.18 seconds per simulation step, while the non-adaptive simulation required 1.2 seconds.
The discrepancy is of course due to the fact that the adaptive simulation requires fewer degrees of

freedom (2637 as compared to 9957 for the non-adaptive simulation).

Summary

By augmenting our framework with force-based rigging, the animator gains additional control over
the shape of the character. At the same time, the dynamic nature of the simulation is maintained,
and external forces such as gravity and constraints can still be used. The forces used for rigging
can come from a library of templates or can be derived from surface deformations, and rigs can be

transferred from one character to another.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

This dissertation has introduced a new character animation framework that unifies dynamic elas-~
tic simulation, skeleton-driven deformation, and shape interpolation. In doing so, we present a new
way of looking at character animation. The shapes that a character takes on are determined jointly
by the dynamical system and the guidance of the animator. Animations of this kind are intrinsically
interactive; they can respond to environmental conditions that did not have to have been anticipated
by the animator. Physical constraints and external forces can be added without changing the rigging
or rig control functions created by the animator.

While we have focused on interactive animations, our framework would also be useful for ani-
mations computed off-line. In general, this system can be used to produce animations that automate
physical dynamics while providing shape control to the animator. We believe that this work is a step
toward a future in which character animation is treated as a physical system under the influence of
the animator via abstract controls. Such an approach offers the significant advantage that the anima-
tor needs only to control the character at a very high level of abstraction, for example, by directing
the character to smile or step to the left. These directions will naturally effect the resulting shape
and motion, but the details of motion will be determined automatically by physical laws.

The remainder of this chapter discusses areas of future work that we believe would be fruitful to

pursue.

7.1 Improving the Physical Model

One of the techniques central to this work is to estimate dynamic behavior using a simple physical
model and correct its shortcomings by introducing additional force fields. The reason that a biceps
bulge does not automatically occur in our system is that the physical model is not sufficiently com-

plex; we do not model the internal anatomical structure that would produce a bulge. Instead, force
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fields are used to effect the bulge.

This raises the guestion: what physical model should be used? The pose-dependent linear elas-
ticity model seems to provide a good balance between efficient computation and plausible deforma-
tion, but it is a very simple physical model. It seems likely that other points in the trade-off space
may also be appealing.

The most obvious deficiency of our physical model is the lack of collision and contact handling.
The deformations that occur in real creatures are highly dependent on contact between surfaces,
especially where creases are formed near a joint such as along a finger. In our system, rig forces can
be used to emulate the effects of collisions to some degree, but when interpolation occurs between
forces there is no guarantee that intersection will not occur. Handling contact would slow down the

simulation of course, but the resulting deformations would be more realistic.

7.2 Geometric Mechanical Components

In this work geometry and dynamics are loosely coupled. Other than the surface of the character, no
geometry is created or updated; no internal structure is maintained in order to determine the shape
of the character in different configurations. The separation of these two concepts was beneficial
because it allowed shape control using the simple abstraction of force fields. 1t also enabled rigging
to be transferred from a character to a similar one simply by mapping force fields.

But separating mechanical structure from its effect on shape has disadvantages too. Consider a
nostril, whose dilation behavior is clearly related to its shape. In our system, if the mapping between
characters maps a nostril to a nostril then the mechanical behavior of the nostril can be transferred.
But what about two characters that cannot be meaningfully mapped to each other, such as a human
and a horse? It would still be nice to transfer the mechanical behavior between them.

If the nostril is to be transferred independent of the structure of the rest of the character, it should
be put in a library. But what cues in the force field tell us how to deploy it? Shape seems to give the
right cues, correlating what the user cares about, shape, with the mechanical behavior.

It seems very promising to approach the problem of rigging physically based characters using a
library of components that have both a geometric and mechanical form. Some of the many interest-

ing questions involved are enumerated below.
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1. Extracting Components - Suppose we are given the surface description of an entire horse and
a second surface that is identical except that a nostril is dilated. Can we extract a mechanical
component that encapsulates both the mechanical behavior of the nostril as well as its geo-
metric form? Where does the nostril end and the rest of the horse begin? How can we encode

the way in which the nostril fits together with its surroundings?

™)

Deploying Components — If we are given a new surface which has nostrils, how can we fit the
nostril in the component library to the new surface? Can the system detect the nostril of the
input and antomatically unify the component with the input?

3. Building Characters Directly — With a library of components, do we even need input ge-
ometry? Can components be connected together to form a complete character? How can
the relationships between components be represented in the library. How can the shape of a

component be edited by the user while maintaining its mechanical properties?

7.3 Learning and Interpolating Physical Properties

The rigging system presented in this work provides shape control in the context of physical simula-
tion. Forces are interpolated to effect shape change. A natural extension of the system would be to
allow physical properties to be interpolated, in addition to forces.

Consider the bulging biceps that was used as an example in Chapter 6. Our rigging creates the
appropriate shape for the bulging muscle but does not impact the underlying dynamics. When a real
muscle bulges it becomes more taut, deforming less easily. In the elastic framework this corresponds
to a change in the shear modulus G (and possibly Poisson’s ratio ). More realistic results could be
achieved if a rig affected G in addition to introducing forces,

The challenge in angmenting our framework so that rigs affect (5 is to provide the user with the
means to design or acquire the physical parameters of the system. For shape control using forces
we had the advantage that the static equilibrium state can be used when the user is interactively
configuring the rigs. For physical properties that affect the dynamics of the system, new methods of
presenting the impact of the user’s decisions will be needed.

Acquiring physical properties from actual objects or characters is also a significant challenge. It

is well known how to acquire the shape of a character using a surface scanner. The skeletal motion of
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a character can also be inferred using motion capture equipment. But acquiring dynamic properties
and parameters for animation is an area that has not been thoroughly explored for the purpose of

character animation.
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Appendix A

DERIVATIVES OF ELASTIC POTENTIAL

The generalized forces associated with elastic deformation correspond to the derivatives of the

elastic potential U, Its derivative with respect to the ¢-th generalized coordinate, for 1 < e < N, is

oU
O

where
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The stiffness matrix (the Hessian of U), which is comprised of the second derivatives of U, is

then
o2 . ..
b = 2AL, + A%, + 1By,

+ Z 21 qfl ad( +2qq 2 Cdm + ‘ZC(da ® qa)

-+ Z Qa Cdm + e ® Ca(d +1 (qﬂ : Cczda))

N
+ Z (qﬂ @ gad + C?lm: @ Qo + C%dc & qfl‘)
a==]

N
+ Z Cla QD) Dabccl +2 (Qb & qa) D d(b)

wz ]

(I (qa : Qb) Dsacb + (qa @ Qb) ng(:d + (qa @ qb) ‘Dzdch) ) (A.3)
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where 1 < ¢ < N,1<d< N,andIisa3 x 3 identity matrix.
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Appendix B

REVIEW OF TRILINEAR FUNCTIONS

A trilinear function on the standard unit cube €% = {x = (z,y,2) : 0 < z,y,2 < 1} isa

function of the form
f(:z?7 Y, z) = @y + a1 + aay + a3z -+ a2y -+ asrr + agyr + arryz.
The function f is determined by its values at the vertices of C*: let ¢(s) denote the hat function

R 1—]s| for|s| <1
¢(s) = :
0 for |s| > 1.

and let ¢o(z, y, 2) = ¢(x)d(y)@(z). Then

f) =Y figkdelz =iy —jz k),
0<i,j k<1
where f; ;. = f(i,], k). Itis easy to check that trilinear functions satisfy the following interpolation

or hexahedral subdivision rules:

(i) The value of f at the midpoint of an edge of C* is the average of its values at the endpoints
of the edge.

(ii) The value of f at the centroid of a face of C? is the average of its values at the corners of the
face.

(iii) The value of f at the centroid of ' is the average of its values at the eight vertices of ('3

If we subdivide the unit cube into 8 sub-cubes in the standard way, we can use these subdivision
rules to determine the value of f at the vertices of cach sub-cube. Repeatedly subdividing and

applying the subdivision rules yields the value of f at each diadic point (i/27, /2, k/27) of C3.
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Because the diadic points are dense in C®, the subdivision rules completely determine f from its
values at the vertices of €. More generally, starting with values of a function at the vertices of
the standard cubic tiling of R® and applying the subdivision rules to each cubic cell determines a
piecewise trilinear function on R3.

We can generalize this construction to define piecewise trilinear functions on any cell complex
in which the vertices of each 3-cell of K have valence 3. Starting with the values of [ at the vertices
of K, we infer its values at the centroid of every edge, face and 3-cell of K. This gives values of
f atevery vertex of the refined complex K’y obtained by subdivision (see [50] for details). Because
the vertices of each 3-cell of K have valence 3, the subdivided complex K has only hexahedral
cells, so after one subdivision, the subdivision process behaves just as for cubes in R,

There is a corresponding nested sequence of function spaces
VocWVicWao. -

defined on K. To define V, subdivide .J-times to obtain the complex K ; and specify values at each
vertex of K ;. The subdivision rules then determine a function on all of K. Thus, each function in

Vi for J =0,1,2..., is determined by its values at the vertices of K.
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Appendix C

ESTIMATING THE ROTATION IN A DISPLACEMENT FIELD

Here we show how to estimate to first order the rotation present in a displacement field.

rotation of @ radians about the axis u, with ||u]| = 1, can be represented as the matrix
R =uu’ +cosf (I —uu’) +sinbA

where T is a 3 x 3 identity matrix and

0  ~—uz U
A= U3 0 -y
U Uy 0

For small 6, where sin @ == 6 and cos 8 ~ 1, we have
Rr~R=1I+60A.
A displacement field that effects the rotation R can be written as

UYL3 — UITY
d(x) =Rx-x=10 UIT| — ULT3

ULy — UYLy

Taking the curl of the above expression results in V x d = 26u. Thus, given a displacement field

d(x), the rotation that it contains can be estimated to be 5[V x d|| radians about the axis V x d.

Note that the irrotational component of d will not interfere with the above approximation because it

is natarally curl free.
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