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(Any equation that is referenced is preceded by the letter for the chapter
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a, or af )
1 1
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A
ji

geometry factor, for example eq. All

expansion coefficients

frequency factor of the rate constant, k

matrix element, for example eq. Al4, representing the
Lagrange interpolation coefficient for the first derivative

operator

coefficient matrix of eq. Bl2 which couples the derivatives

uniform ellipticity constant for a'

air-to-fuel ratio of mixture into automobile eng‘ine
expansion coefficients

matrix element, for example eq. A15,‘ representing the
Lagrange interpolation coefficient for the Laplacian
operator
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boundary of Q

concentration or heat capacity

expansion coefficients

matrix element, for example eq. Al2

approximate solution at the i-th collocation point
positive numbers of eq. B68

vector function

differential element of integration

particle diamter
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xi
tube diameter
spatial domains
matrix eiewnem s, for example eq. Al3
expansion coefficients as defined in Table Bl6
effective mass diffusivity in a catalyst particle
binary diffusion coefficient for nitric oxide and nitrogen

i-th component of numerical integration error for system
of differential equations

defined by eq. A57

activation energy in the definition of the Arrhenius type
rate constant

quadrature error for a scheme using n interior quadrature
points and | boundary point

friction factor or function
expansion function

volumetric flow rate

Federal Test Procedure
function of eqs. A27 and A49
mass fraction of the i-th component or constant of eq. Bl6
mass flux or Green's function
"grad'" operator

function of eqs. A26 and A50
heat transfer coefficient
subspace, for exampie eq. B4

over-all heat transfer coefficient
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AHis heat of adsorption

A HRXN heat of reaction

[1] identity matrix

k a rate constant or a numerical éarameter

kl’ k2 constants defined in eq. AlS8

ko’ kl constants defined in eqs. A26-27

k: effective solid thermal conductivity

kj parameter of eq. B76

ko, kj constants of eq. B20

KA, KB adsorption equilibrium constants

kI:O mass transfer coefficient for nitric oxide

kS effective thermal conductivity (radial component) in a
* packed bed

Kl' KZ constants defined by eq. B28

K.1 differential operator of eq. B65

Kf: adjoint operator of K.l

Ij parameter of eq. B76

Li(xz) Lagrange interpolation polynomial

L length parameter

m mass average molecular weight

m, molecular weight of i-th component

m number of collocation points (in method of least squares)

M Lipschitz constant
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xiii

a priori upper bound for the solution to the transient heat
balance for a nonisothermal chemical reaction
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number of collocation points or expansion functions, or
n-th order chemical reaction

max [(' )[

S ( )2 dv
D
Nussalt number
inverse of the dimensionless thermal conductivity
inverse of the dimensionless mass diffusivity
defined in eq. B4l
v,
i

Mmax VeV
X

a general norm

a mixture of the nitric oxides, primarily nitric oxide(NO)
and nitrous oxide (NOZ)

Landau symbol

partial pressures of components A and B
pressure drop

pressure (absolute), total, eq. Cé6

orthogonal polynomial, (i-1)-th order in the independent
variable

Prandtl number



Pe

N:"NB

ji

[t}

=1 ]

xiv

axial mass Peclet number

axial heat Peclet number

matrix element, defined in eq. Al4

i-th collocation point

radial coordinate or constant in eq. B3

radial increment

j-th over-all rate expression

operator
residual function
particle radius

ideal-gas constant

particle Reynolds number, eq. C8

external surface area of particles in the reactor

Schmidt number

Sherwood number

time variable

upper limit of time variable considered

time increment (or step size)

temperature or upper limit of time considered

aroroximate solution at the

i-th collocation point

exact solution of differential equation

expansion functions
approximate solution at the

approximate solution

i-th collocation point
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vector function

u

v function

v vector function, for example velocity function in eq. B63

(v) a vector notation

v, VTOTAL total reactor volume

Vi volume of i-th mixing cell

w(x) or

wi(x) weight functions
(n+1) . . . .

W, j-th quadrature weight-coefficient of a scheme using n
J interior points and 1 boundary point

X, X spatial coordinates

xj j-th collocation point

Ax spatial increment (or step size)

y exact solution of a differential equation

(1

X:Z; or

y approximate solutions

z axial coordinate in tubular, packed-bed reactor

Greek letters:

dimensionless equilibrium constants of eqs. B52-53

1" 2 3 4
a constant of eq. B3, of eq. B35, or eq. B63
B dimensionless heat of reaction
pj constant of eq. Bé64
Y dimensionless activation energy
Y constant of eq. B64
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6(x - §j) Dirac delta function

aij Kronecker delta

6j constant of eq. B64

€ void fraction, reactor

€ p particle void fraction

ej j-th error component of the approximate solution to a

system of equations

3 effectiveness factor

)\i i-th eigenvalue

Q spatial domain
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o(r) function of eq. B48

Y(r) function of eq. B48

P density
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Subscripts:
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INTRODUCTION

While the approximate methods of solving differential equations
receive occasional consideration in texts and in the literature these
methods continue to be viewed with a certain amount of curiosity. This
is due partly to the association of specific methods with specific prob-
lems, for example the integral method is frequently associated with
the boundary-layer equations. Quite often these associations are pre-
sented in such a way (unintentionally) as to obscure the manner in which
the method can be generalized and applied to additional problems. if
one considers the use of these methods in solving nonlinear differential
equations one often finds that the resulting mathematics is unduly
complicated (as compared to other means of solution). The objective
of this study is to provide an extensive development of an approximate
method which has a great deal of potential and to derive new error
bounds for the purpose of assessing the accuracy of such an approximate
solution.

In Chapter A we show how the method of orthogonal collocation,
an approximate method of solution, is easily generalized for application
to many different types of nonlinear ordinary and parabolic partial dif-
ferential equations. Unlike many other apprcximate methods of
solution, the method of orthogonal collocation is quite easy to apply to
nonlinear problems, for example the method reduces a semi-linear
parabolic partial differential equation to a system of first-order ordinary

differential equations. We illustrate the application of this method by
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analyzing different nonlinear differential equations common to reaction
engineering. Briefly, the numerical illustrations indicate that, for
nonlinear parabolic partial differential equations, the method requires
only :11- to % the computation time required to obtain a solutio;x of
comparable accuracy (estimated) with a finite difference scheme. We
develop several new features for the method with respect to its use and
prove that the convergence of the solution obtained by Galerkin's method
is sufficient to guarantee the convergence of the solution obtained by the
method of orthogonal collocation. This last fact allows one to prove
convergence of the method of orthogonal collocation (in many cases) by
simply using the available convergence proofs for Galerkin's method.

While a method of solving differential equations may be easy to
use for many types of problems, one does not generally know anything
about the accuracy of the approximate solution (we are referring to a
rigorous assessment of the error). With an error bound one is able to
compare the accuracy obtained using different approximate methods,
using different expansion functions (when the approximate solution is
assumed to have the form of a linear combination of know functions and
unknown expansion coefficients), or using different numbers of expansion
functions. In Chapter B we derive several new pointwise and mean-square
error bounds for nonlinear, second-order ordinary differential equations
and semi-linear parabolic partial differential equations. These results

are valid for systems of equations. By means of example, we show that
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the method of orthogonal collocation, using only three collocation
points, provides approximate solutions which are pointwise accurate to
within 0. 01%. The error bounds represent a significant advancement
in the field of approximate methods of solution.

In Chapter C we analyze a packed-bed reactor for the conversion
of nitric oxide to nitrogen and carbon dioxide. The reactant stream is,
for this problem, the exhaust from an automobile. We use the method
of orthogonal collocation at various stages of the analysis. Based on
available data, the reactor is modelled by a series of four mixing-cells
in which the reaction occurs heterogeneously. The completed model
simulates the conversion of nitric oxide under the transient operating
conditions prescribed by the Federal Test Procedure. The analysis of
the transient model indicates that the thermal inertia of the solid

packing is an extremely important variable.



CHAPTER A

Collocation as a Method of Analysis

The method of collocation is a means of obtaining an approximate
solution to a differential equation. This method is particularly useful
for nonlinear ordinary differential equations and nonlinear parabolic
partial differential equations, as demonstrated in this chapter. Briefly,
the method requires the approximate solution to satisfy the differential
equation exactly at a few selected points (collocation points) in the do-
main of the independent variable(s). When these points are chosen as
the roots of an appropriate orthogonal polynomial, the method is
referred to as orthogonal collocation. We have assumed that the ap-
proximate solution has the form of a linear combination of functions
and these are referred to as expansion functions.

The following section illustrates, by means of a simple nonlinear
ordinary differential equation, the use of the method of collocation. One
must choose thé expansion functions and the collocation points. The
accuracy can be estimated by increasing the number of points and noting
any changes in the approximate solution. One should not accept a
questionable approximate solution.

Current evidence indicates that the method of orthogonal collo-
cation is a substantial improvement over the simpler method of
collocation. The method of orthogonal collocation transforms an

ordinary differential equation into a system of n algebraic equations



5
where n is the number of collocation points. This system of equations
can be written with the values of the approximate solution at the collo-
cation points as the unknown quantities. We have found that one set of
orthogonal polymials gives better results for problems with the solution
specified on the boundary and that a different set gives better results
when the solution is unspecified on the boundary.

When the method of orthogonal collocation is applied to nonlinear
parabolic partial differential equations of the form u, = f(uxx, ux, u, x,t),
one obtains a system of n first order ordinary differential equations with
time as the independent variable. This system can be integrated using
one of the familiar techniques: a Runge-Kutta method or a predictor-
corrector method. We chose the improved Euler method (without
iterations). We examine the numerical stability and prove a rather
simple stability criterion. We have shown that the convergence of the
approximate solution obtained by Galerkin's method is a sufficient con-
dition for the convergence of the approximate solution obtained by the
method of orthogonal collocation. This is a very useful result because
it allows one to use directly the proven convergence theorems. The
method of orthogonal collocation is applied to the transient mass and
energy balances describing a nonisothermal chemical reaction. These
applications indicate that the resulting computation times are from 1

4

1 . . P s oo
to 20 the time required for an explicit finite difference method. The

ease of applying the method of orthogonal collocation, the estimated
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accuracy, and the reduced computation times indicate that the method
has an extremely high potential as a tool for numerical analysis of such

equations.

1. Introduction

When the exact solution, u, of a differential equation,
Rlu] =0 (1)

is approximated by a linear combination of n specified functions, u., no

set of n coefficients will, in general, result in the approximate solution,

(2)

et
1
INGE
0
X
,_'ﬁ

[
"
[

satisfying the equation exactly. Thus R[;] + 0 everywhere. The values
of the coefficients can be determined by requiring that the approximate

solution, u, satisfy the differential equation in some integrated sense.

S w.(x) Rla(x)] dv=0 (i=1,...,n) (3)
D
R[ﬁ] is referred to as the residual function. The exact solution, u,
would satisfy eq. 3 for any family of weighting functions, wi(zc_). Differ-
ent choices of the weighting functions in eq. 3 correspond to different

methods of weighted residuals, which are summarized in Table 1.
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Table 1

Correspondence of Weighting Functions to
Different Methods of Weighted Residuals

Weighting Function, wi(_>_:_) Method
ui(lc_) Galerkin's method
xi Method of moments
1 for xe¢ Di Subdomain method
21:[&] Method of least-squares
1
6 (x - _;_c_i) Method of collocation

For many types of nonlinearities the expansion coefficients of u
appear in a form which precludes their separation from the integrand
of eq. 3, for example,

n
sin Z ci ui(i)

i=1

The method of collocation is particularly effective with this type of non-

linearity because eq. 3 becomes algebraic rather than integral,

n
R Z cj uj(_§i) =0, (i=1,...,n). (4)
i=1
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In brief, the method of collocation requires the approximate solution to
:agisfy the differential equation exactly on a set of n discrete points in
D. One of the difficulties until recently was the positioning of the col-
location points. As shown by Villadsen (19), an arbitrary positioning
of the collocation points can lead to numerical divergence for even the
simplest problems. This is also exhibited in the following example.

A relatively simple nonlinear ordinary differential equation was

investigated:

1 d (rflay) | 2

Rlyl = =3 ar Y -0
r dr
y (0)=0
y(l) =1 .

This corresponds to the dimensionless mass balance for a second order,
isothermal chemical reaction in a spherical catalyst particle, where the
Thiele modulus has been chosen as 1. Two different approximate solutions
arestudied ?(l)and ?(2) (see eqs. 7 and 8). Two types of collocation are
investigated— (a) ordinary collocation, eq. 5, and (b) least-squares

collocation, eq. 6:

R[?(l‘j)] =0, (j=1,..., m=n) (5)

m
and —8-2;- Z R['fr(ri)] 2 =0, (j=i,...,n)

1=

Pt



or § R[?(ri)] 2 = minimum (6)

i=1

where in eq. 6, m is greater than/or equal to n (we have n coefficients

and m collocation points). The first approximate solution, '9(1), has the
form
&
3}‘”: 1+(1 - rz) Zai(n)cos(i-l)wr. (7)
i=1

The collocation points are chosen as the zeroes of cqs(m-l)wr and r=1.
Notice that the approximate solution satisfies the boundary conditions.
The second approximate solution, ;(2)’ has the form that would result
from assuming the exact solution, y, could be expressed as a power

series.

n
;‘2) =1 +Z bi(n) (r2t o 1) (8)
i=1

(2)

The collocation points for ¥ are chosen as rj=j/m for j=1, ..., m.

This form of approximate solution also satisfies the boundary conditions

~(1) ~(2)

exactly. The first few expansion functions fory' " and y = are shown
in figures 1 and 2.
Figures 3 and 4 exhibit the approximate solutions for ordinary

collocation. Obviously, the cosine series yields inferior results in

comparison to the power series. This is mirrored in the behavior of
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the residual function (figures 5 and 6). Based on these observations,
the power series solution should be judged acceptable. The cosine
geries solution is of doubtful value. Remember though that the expansion
functions and the collocation points have been chosen separately. The
behavior of ')'r(l) can be a result of the choice of the collocation points.

Figures 7 through 10 provide the same information for the
least-squares collocation method. It appears that 9(1) may be accept-
able, but notice the order of magnitude difference in the residual

~(2)

function compared to that for y

;(1)

Auxilliary calculations show that

~(2)

the behavior of the solutions, and y ', is also mirrored in the

following quantities :

(a) the expansioncoefficients

(b) the mean-square integral of the residual
function

(c) the maximum absolute value of the
residual function

Equation 6 is a crude approximation to the method of least-squares
(table 1)—particularly so when using equally spaced collocation points.
As illustrated in figure 11, the mean-square integral of the residual
converges to a limiting value as m, the number of collocation points,
increases. Even more important is the fact that the mean-square error

bound is proportional to the mean square residual:
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f.=(1-X2)COS(i-1ITX

Figure 1. Cosine expansion functions versus x.



Figure 2. Power series expansion functions versus x.
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1
NOTE: || R, ||z = S R [;‘2’(n=i, m=M)]2 dx
i, M LZ o

Table 2

Mean Square Error Bound for Least-Square Collocation

(Power Series Solution)

Number of Expansion Number of Collocation Mean-Square Error

Functions Points Bound
2 2 3.542 x 10'4
3 3.181 x 10'4
4 2.940 x 10'4
5 2.811 x 10'4
6 ' 2.747 x 1074
-5

3 3 1.245 x 10
4 1.114 x 10'5
-5

5 1.052 x 10
-5

6 1.008 x 10
-7

4 4 4.514 x 10
5 3.524 x 10’7

6 ~3x 10'7

-7

5 5 1.015 x 10

8

6 ~ 9x10
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o o
(Refer to Chapter B). One can conclude that the least-square collo-
cation solution is better than the ordinary coliocation solution for this
problem and that the improvement is limited by the accuracy of the
least-squares method of Table 1. For the data of Table 2, the improve-
ment is roughly 25%.

For this particular problem, the power series solution is
superior to the cosine series solution. However, if the choice of the
expansion functions is a poor one, e.g., cosine series, then the least
squares collocation helps improve the results obtained with ordinary
collocation. In addition, error bounds are derived in Chapter B and
the error is proportional to the mean square residual. Consequently
the least squares collocation minimizes the error bound since it mini-
mizes the mean square residual. These advantages of least squares
collocation are overruled, however, by one overriding constraint: ease
of computation. Ordinary collocation is easier to use, and the method

of orthogonal collocation is even easier and is described below.

2. Orthogonal Collocation for Ordinary Differential Equations

After learning of the difficulties that can occur with an unfortunate
choice for the expansion functions or the collocation points, ore should
appreciate the importance of the advance recently made by Villadsen

and Stewart (21). These authors show that a particular set of
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orthogonal polynomials, which satisfy the boundary conditions, can be
associated with each particular problem and that the roots of the (n+l)th
polynomial of this set should be used as the collocation points for an
n-term expansion. Until this time (1967) there had been no way of
systematically increasing the number of collocation points while ac-
counting for the boundary conditions. Further, Villadsen and Stewart
show that the values of the approximate solution at the collocation points
can be evaluated without calculating the expansion coefficients explicitly.
Their method, referred to as orthogonal collocation, is a discretized
form of Galerkin's method. Recent applications include the work of
Stewart and Villadsen (17) to predict the occurrence of multiple steady-
state solutions to the mass and energy balances in a catalyst particle,
Livbjers, et al. (13) to study the catalytic oxidation of SOZ’ McGowin
and Perlmutter (15) to delineate regions of asymptotic stability for prob-
lems with multiple solutions, Ferguson and Finlayson (5) to study the
transient behavior of the coupled heat and mass balances for a first
order chemical reaction, and Finlayson(6a) to analyze the radial
dispersion model of a packed-bed reactor for a highly exothermic chem-
ical reaction. Villadsen and Sorenson (20) extended the method of
orthogonal collocation by advocating collocation in both the spatial and
time variables. This last modification allows the use of large time steps

while maintaining high accuracy.
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As an example of the use of orthogonal collocation, let us
examine a particular differential equation with the following boundary

conditions:

1 a (27hay) =Hxy) (9)
dx

dy(0) = 0
dx
y(1) =1

An expansion which satisfies the boundary conditions exactly is

n
S N TG (10)

i=1

The factor (1 - xz) enters into y in satisfying the boundary con-
ditions, and Villadsen and Stewart chose to define the Pi as the

polynomials satisfying the condition

1
S (1 - xz) P, (x?‘) Pj(xz) (xa'ldx) = 613. (i,j=0,1,...) (11)
o]

Pi is an i-th order polynomial in xz. A property of the orthogonal
polynomial, Pi(xz), is that there are (i) roots on the interval (0, 1) for
the ith polynomial. The approximate solution, y, involves n coefficients
so that we need n conditions in order to specify the function. 1n ordinary

collocation one would simply choose some n collocation points For
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orthogonal collocation the collocation points are the roots of Pn(xz) = 0:

12, N xnz. Although the polynomials are defined as in eq. 11, all

one really needs computationally are the roots, sz. These have been

X

compiled for many polynomials by Stroud and Secrest (18). ir(xz) can be

written equivalently as

n+l
.2, 2.i-1
7= ) byt
i=1
n+l n+l
such that v (x2)= Z b(xz)i-1 "Z Q..b, or (y) = [Q] (b))
v LR A A
i=1 i=1

If one is solving an ODE which involves first derivatives then

ntl n+l
- _ 2i-2 _
dy = Z b, d( ) = C.. b, (12)
dx :q:z-x.z i dx X=X =~ )
j i=1 i=1
43
or ( d—z:) = [C] (b))

and in the case of the one-dimensional Laplacian operator,

1 n+l )
1 a4 (37 ay) =) b L ae?la?Hl a3
a-1 dx dx | x=x. ~ 1y dx dx X=x,
x j i=1 J
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or (‘72§) =[D] (b).
But (b)Y =[Q] -1 (y) such that
7'y = (el lal™! (¥y= (Al (¥ (14)

(yy= [B]l (yy . (15)

The net result is the reduction of the example problem to

[B] ¢yy - «(£(y)y =0

which is an algebraic system of (n) nonlinear equations with

§n+l = y(1) = 1. Notice that the problem has been reduced to that of
solving for the values of ¥ at the collocation points rather than for the
values of the expansion coefficients, a.i.

The matrix elements of [A] and [B] can be determined explicitly
in terms of the collocation points. This is a new result and has one
immediate application. In studying a particular problem for which the
[A] and [B] matrices have not been tabulated, the explicit expressions
for Aij and Bij could be evaluated at a desk calculator where otherwise
one would have to use a matrix inversion subroutine and a digital com-
puter—particularly for values of n greater than 2. Further application
of the expressions depends on their accuracy and ease of use. To derive

the explicit expressions consider the following equivalent Lagrange
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interpolation polynomial for the approximate solution, '{r(xz):

+1
Fix) =§ L. (5 F(x, )

i=1

where the Li are the Lagrange interpolation functions,

L6 = Joed-x
I 2 2
kai T %)

If qne is then interested in the first derivative of y (xz) (at any point in
the interval of definition), one can differentiate the Lagrange inter-
polation polynomial for y (xz). First, consider the individual function,

Li (xz). By using the definition of the natural logarithm function,

ln(Li(xz) ) =z In (x2 - xkz) - Zln (xi2 - xiz)

kti k+i

one obtains dLi/dx quite easily,

L'

iy o

Li —t (x - xk )

k+i
or dL (xz)'= krii (x 'xkz) 2x
dx? (xiZ - xK) (x¢ - %)

n . k
ki ket

By comparing the first derivative of '}'r(xz) as defined by eq. 14 and the
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first derivative of the Lagrange interpolation polynomial for ?(xz), one

finds that
A . = dLy (x.z)
B ax
11 2 2 .
Tl s 2%; (16)

where the first quotient of Aij has the value 1 for i=j. Similarly, one

is able to show that Bij is given by

B,,=V" L,
1 t X=X,
2
h§ 2
B s k.l Z 2x; ZZ 1
T nm (x2.x2 (.2 - x 2 (xl .8
e % Xy ) ki \x; X ) k+i (xJ xk)
N 2x. ,2 2x.
— 3 ;s a-1 - 3
ki ((sz - xi %) ) X5 ki (sz - xkz) . (17)

Similar expressions can be obtained for y(x) (where y is not an even

function).

Now consider a boundary condition of the third kind at x =

2 dy(l) S
K, dx +oy(l) =k, (18)
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For heat transfer to a catalyst particle, y(1) would be the dimensionless
temperature at the surface, k1 would be a Nussalt number (in the heat

transfer literature, this usually referred to as a Biot number),
Na=h d /kS ,
t p s

and k2 would be the bulk fluid temperature. With this type of boundary

condition, y(1) is now an unknown quantity and the approximate solution

can be represented as,

~, 2
y(x) = v(1)+(1-X)Z a P, (x) . (19)
=1
Replacing eq. 18 (using eq. 14 for x +1 =1) as
n
n+l
2 ;‘ - = -
k1 L An+1, JYJ +Yn+l -kZ ’ (20)
j=1

one has a system of (n) nonlinear equations (eq. 21) and one linear

equation (eq. 20) to solve for the (n+1) unknowns:

Z By, - fF) = 0. (=L....n) (21)

Define the polynomials of eq. 19 as,

SJ Pi(xz) Pj(xz) (xa'ldx) =6, . (22)

o 3
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As discussed by Villadsen and Stewart (21), if one is able to know the
exact value of y at x=1, then 6ne should use orthogonal polynomials
which have a weight function which vanishes at x*1. On the other hand,
here we do not know the exact value of y at x=1. This value has to be
approximated and because of this, a weighting function which does not
vanish at x=1 has been chosen. The polynomials defined by eq. 22 are
referred to here as Legendre polynomials.

To each set of orthogonal polynomials, defined similarly to
eq. 22, there is associated a Gaussian-like quadrature scheme. These
schemes depend on the proper placement of the quadrature points for
their great accuracy. More specifically, the quadrature points are the
roots of the dcfined polynomials. Assume that one has the following

orthogonal collocation equations:
-, 2 )
R[Y(Xj )] =0, (j=1,...,n+l)

Then by multiplying each be Wj(n+l) . wi(xj) , where Wj(n+l) is the jth
quadrature weight coefficient for the (n+1)th order quadrature scheme,

and by summing over j, one obtains

n+l
+ -~
Z wj(n 1) wi(xj) R[y(sz)] = 0, i=l,...,n+l
j=1 ‘

which is identical to the equations for Galerkin's method (up to the error

term of the quadrature method):
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~1

ntl |
~, 2 a-1 _ (n+1) ~ 2 (n+l) _
3 w(x) R [F(x7)] (x"""dx) = Z w, w,(x,) Ry ()] + E = 0.

(o] J=1

This explains why the method of orthogonal collocation is referred to as

a discretized Galerkin method.

3. Application of Orthogonal Collocation—Boundary Value Problem

An area of study which is particularly amenable to the use of
orthogonal collocation is chemical reactor analysis. This is because

of the typical types of rate expressions encountered, viz.,
rate =k c

—kKA KB PA PB
rate =

2
(1+K, P, +K Py

where k = A exp (-E/(RgT) ) and Ki = (constant) x exp (*A H;/(RgT) )
(k is the rate constant while Ki is an adsorption equilibrium constant).
If a chemical reactor is operated isothermally, the rate depends only

on the concentration, C, or the partial pressures, P, and P

A B’ However,

if the reactor is operated in a nonisothermal fashion, the rate of reaction
depends on the local temperature. The temperature dependence of the
rate expression is shown above as being of exponential nature. The
exponential function has the ability to increase by an order of magnitude
or more for a much smaller change in the dependent variable —~temp-

erature. The exponential temperature dependence on the rate expressions
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makes the analysis of a nonisothermal reactor more difficult than that

of an isothermal reactor. Additionally, one finds that accurate solutions
to the problem of the nonisothermal reactor can require considerable
effort and sometimes ingenuity.

As an example, consider the following problem. A first order
irreversible chemical reaction is occurring in a nonisothermal, spheri-
cal catalyst particle. Consequently, one must consider both the heat
balance and the mass balance. One finds that the rate expression
describes the rate of heat generation in the heat balance and the rate of
disappearance of the reactant in the mass balance. It is the rate ex-
pression which 'couples' the two conservation equations—the rate
expression depends, itself, on both the temperature and the reactant
concentration. A physical example of such a problem is the oxyhalogen-
ation of saturated hydrocarbons.

For such a problem with a boundary condition of the first kind,

it is known that the system can be described by the following equations:

1 d (2ar) -¢2[T-(+p)] expl-v(1/|T| -1))=0  (23)

rZ ar dr

T' (0)=0
T(1)=1

e(r) = c(1) % [T(r) - T(1)] .
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If we know T (r), we know c(r); consequently, we only need to solve the
differential equation for T(r). The square of the Thiele modulus, 4)2. is
the ratio of the rate of reaction at the surface conditions to the rate of
diffusion into the particle. p is the dimensionless heat of reaction—
positive for exothermic reactions. For this problem, 1 + B is the
maximum temperature which the reaction will support. Y is the dimen-
sionless activation energy. Mathematically, the analysis of this
problem follows the format developed in eqs. 9-15. It is known (16)
that this problem has three mathematical solutions for the following

choice of parameters:

¢ =R ef) = .25
De
8
- D°aH c
- "8 ‘rxn ref _
B = p = .6
k T
s ref

y = E/ (RgT = 20.

ref)

The solutions to this problem are qualitatively represented in the fol-

lowing sketch:
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1.69—3
Tr)

10=
O r 1

As might be expected, the solutions become progressively more difficult
to approximate going from 1 to 3. The engineer is interested in two
properties of this problem: (1) the maximum temperatures which occur
in the center of the particle and (2) the effectiveness factor. The ef-
fectiveness factor is the ratio of the mean rate of reaction within the
particle to the rate which would occur if the surface conditions pre-

vailed throughout the particle. It can be shown that the effectiveness

factor, £ , is given by

- (-3) 4T
& = ZBdr

r=1

or by integrating eq. 23 over r,

1
. i;z;;l So 4’2 [T-0+8)] exp(-v(2/|T| - 1))(rzdr)-
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The first form for £ will be referred to as the derivative value and the
second as the integrated value. Although the two forms are identical
for the exact solution, T, they will not be numerically identical when the
approximate solution, 'f[". is used to evaluate & .

Applying orthogonal collocation to eq. 23 gives

1

13ij 'i‘j - ¢2 ["1'*i -(1+ B)] exp(-v (1/|'f’i| -1))=0 (24)

S5

(i=1,...,n)

where T(1) = T(1) = T 1. [Bij] is defined by eq. 15 or 17 and

n+l =
depends only on the collocation points. In this case the collocation
points are the roots of the polynomials defined by eq. 11 with a=3
(spherical geometry). Villadsen and Stewart (21) refer to this choice of
polynomial as a type of Jacobi polynomial. Eq. 24 represents a set of
nonlinear algebraic equations which are solved with the Newton-Raphson
technique: the equations are linearized and solved iteratively. To
assess the accuracy we can look at the numerical convergence for
increasing n. We do that here and also compare to the results obtained
by a second method.

The method of quasilinearization (11) is used to obtain a finite
difference solution. Quasilinearization refers to the manner in which

the nonlinearity is treated:
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2
4T i . a-1dTy 1,  5¢ T =T
2 r dr 8T |T=T k+l1 k' -
dr k
of _
5T lT=T T, (k=0,1,2,... )

where  £(T,) = 2 [T, - (1+ )] exp(-Y (UATJ- 1))

T, - (1+8))Y

8f = o2 exp(-Y a/|T | - 1) |1+ .

8T |T=T
Kk Ty,

One is solving a succession of linear ordinary differential equations.

The initial guess, T , was chosen as T with a small value of n(l or 2).

The derivatives are approximated by the following differences:

daT . .
dr A%'
_ 1T G -T ()]
= o [ "k+1 k+1
2
aT
k+1 1 . . .
‘;‘r?"' = (Z%)Z [ Tyyy G+ - 2Ty, () + Tye4113-1)]
i
— |
with j=2, ..., n+l such that Tk+l(1) = Tk+1(r=0) and Tk+1(n+2) = Tk+l(r=l)'

There are (n-1) interior grid points. Although the Laplacian operator

may be singular in cylindrical or spherical geometries, there is no
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problem here. We only difference the ODE at interior points. Ad-
ditionally, the condition of dT/dr(0) = 0 guarantees that the Laplacian
operator has the form 3(d2T/drz) in the limit as r goes to zero.

The resulting set of algebraic equations is, in matrix form, tri-
diagonal and can be solved by the Thomas method (16): one sequence
of elimination followed by one sequence of back-substitution. The values
for £ obtained by the above finite difference scheme are summarized in

Table 3.

Table 3

Effectiveness Factors for Nonisothermal Chemical Reaction

(Finite Difference Calculations)

Solution 1/4r £ (integrated) £ (differentiated)
number (value) (value)
1 20 1.3105 1.2740
1 50 1.3216 1.3078
1 100 1. 3256 1.3195
1 0 * 1. 329 1.331
2 20 3.7828 . 3.9386
2 50 3.6941 3.7582
2 100 3.6671 3.7002
2 5 * 3. 642 3.642
3 20 42.701 43,274
3 50 42. 323 42,530
3 106 42.183 42. 288
3 o 42.05 42.05

*
linear extrapolation to the value for Ar=0
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The corresponding results for the method of orthogonal collo-
cation are given in Table 4. An interesting comparison can be made
by considering the total number of calculations required for the two
methods of solution—finite difference and orthogonal collocation. For
one of the finite difference solutions the linear differential operator is
replaced by a 20x20 matrix (Ar=.05) which is tri-diagonal: roughly 60
multiplication and addition operations. Additionally, the nonlinear rate
expression has to be evaluated 20 times. Now consider the orthogonal
collocation solution. The linear differential operator is replaced by a
6x6 matrix (n = 6) which is dense (in fact there are no non-zero elements):
roughly 36 multiplication and addition operations. The nonlinear rate
expression has to be evaluated 6 times. Consequently, the orthogonal
collocation solution should be about 2 to 3 times faster (for n ="6) than
the finite difference solution (for 1/Ar = 20). By inspecting Tables 3
and 4, one sees that the collocation solution (n = 6) is also more accurate
than the finite difference solution (1/Ar = 20) (with respect to the extra-
polated values of Table 3).

The derivative values of Tables 3 and 4 for & are not as accurate
as the integrated value. Interestingly, the collocation solution required
about 7 seconds of IBM7094 computation time while the quasilinearization-
finite difference solution required about 28 seconds. As mentioned
previously, the method of orthogonal collocation is, for problems with

this type of nonlinearity, the easiest to apply of the methods of weighted



40

Table 4
Effectiveness Factors for Nonisothermal Chemical Reaction

(Orthogonal Collocation Calculations)

Solution (integrated (differentiated

number n value) - value)
1 2 1. 329 1.313
1 4 1. 329 1.329
1 6 1. 329 1.329
2 2 4.250 3.616
2 4 3.672 3.573
2 6 3.643 3.628
3 2 33.33 42.06
3 4 45. 51 33.59
3 6 41.79 46.73

residuals. For a similar problem having only one mathematical solution,
the accuracy obtained was similar but the computation time for collocation
was 3 seconds while that for the finite difference solution was 6 seconds.
Part of this variation in computation times from one problem to the ne:xt
will be due to the initial guess for the iterative scheme used to solve the
equations. This makes any comparison open to change if the problem

is re-worked using a different initial guess.

4. Orthogonal Collocation for Parabolic Partial Differential Equations

The method of orthogonal collocation is developed for nonlinear,

parabolic partial differential equations. In principle, the method can
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be applied to the following type of problem:
du

2 |
. = £( v u, u, u, X t) . (25)

Let us assume the following general boundary conditions:

s © 8-k (air) - at0,8)) (26)

du (1,¢t) _

ox k, (g(t) - u(l, t) ). (27)

For this case the approximate solution, f(x,t), could be assumed to have

the followihg form:

n
Alx,t)=xu(l,t)+(1 - x)u(0,t) +x(1 - x) Z ai(t) Pi-l(x) (28)
' i=1

with Pi(x) defined by

.1
a-1 -
So Pi(x) Pj(x) (x “dx) = 515 . (29)

The definition of Pi(x) is also an assumption. We want to select the
family of polynomials with the weight function which most accurately
describes the information we have about the exact solution on the
boundary. For the general boundary conditions, u (0, t) and u(l, t) are
both unkown functions of time. Consequently, we choose the family of

polynomials with the unit weight function. The factor (xa-ldx) represents
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the geometry associated with the physical problem and is not part of the
weight functi;n normally associated with a given family of polynomials.
As a variation, consider the boundary conditions with ko' kl—’oo .

Then we know that

u(0, t) = h(t)
u(l, t) = g(t)
and we have
n
alx, t) = x u(l,t) + (1 - x) u(0,t) + x(1l - x) Z ai(t) P,1 1(x) (30)
i=1
with a different set of orthogonal polynomials:
1 a-1
S x(1 - x) Pi(x) Pj (x) (x dx) sij . (31)

(o]

Additionally, consider the boundary conditions with ko"O and

kl—; 0 . Then we have
ou
x (0,t)=0
u(1,t) = g(t) .

If we know that u(x, t) is an even function (which would satisfy the first

boundary condition),
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n
B(x ) = (1, 8) + (1 = x0) z a (8 P, (x%) . (32)

i=1

The use of even functions seems particularly well suited for problems
in cylindrical or spherical geometries where the single independent
spatial variable is the radial coordinate. The orthogonal polynomials

would then be defined as

1
S (1 - %) P (D) P () (> lax) = 6. (33)
1 J 1j
o
We refer to these polynomials as the Jacobi polynomials. The poly-
nomials defined by eq. 33 represent only one member of the family of
Jacobi polynomials (2).
Lastly, consider the boundary conditions with ko—’O. Then we

have

du _
o (0,t)=0

.g% (1,t) = kl(g(t) - u(l,¢))

and would choose the following form for u (x, t),

n
B (x, t) = 8 (L, t) + (1 = x°) ) 2 ®P (x%) (34)

i=1

with Pi (xz) defined by
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1
So P, (x%) P, (x?) (x*"'dx) = 5, (35)

These polynomials are referred to as the Legendre polynomials. In
the classical sense the integration was always on the line: dx rather
than xa-ldx. The roots tend to be grouped closer to right-hand end of
the interval (0, 1) as '"a" increases from 1 to 2 to 3.

In all cases where u (0, t) and/or @ (1, t) is an unknown function,
we need to specify how that function is to be obtained. First though, let
us consider an alternative to the assumed forms for u (x, t). Equations

28 and 30 can be written equivalently as (with different bi)

nt2 .
Qe )= ) b (t) x (36)
i=1
such that
n+2
~ - i-1
u, =u(x,t)= b, (t) x, j=1,...,n+2
=00, 0 Z L (8) x, (j )
i=1
or (ay = [Q] (b))
such that (b)= [Q]’1 (a)
The particular xj's of interest are x, = 0, x = 1 and the (n) roots of

1 n+2

Pn (x) defined either by eq. 29 or eq. 31. Any differential operators in

the variable x can be evaluated at the collocation points be using eq. 36:



- 1:_1_-!:2 i=1
agu (x,t) =24 b, (t) 9 x
X i x
X=x, . X=X,
j i=1
8:1 - . "1 -~ -
or (3%) ° [xl] (by = [X]] [Q]™" (uy = [A] ¢@y (37)
such that g—% =x can be written in terms of the unknown solution at
j

the collocation points. Similarly, for Vzﬁ :

v a (x, t)l = Z bi (t) [vz xi-1]
x=x, .

or (Pay = [X,] (@1 ' (ay = [B] (& ). (38)

There are similar matrices ([A] and [B] ) for u(x, t) defined by eqs.
32 and 34.

The reason for utilizing eq. 36 is two-fold: (1) numerically,

problems are easier to solve in terms of the values of the solution at

the collocation points rather than in terms of the expansion coefficients,

and (2) only the roots of the polynomiala are required. 1f, as example,
eq. 28 were used rather than eq. 36,

- n

9 u (x, t) - -

B x — = u(l,t) - a(0,t)+ (l-ij) Z ai(t) Pi-l(x')
j

J
i=1
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: I, '
+x (1 %) Z a, () (P, )

i=1

X=x,

the evaluation of the derivatives would require not only the roots, but

also the explicit form of the polynomials. This calculation can become

quite tedious in practice. '
with @ (0, t) and/or u (1, t) unknown, one simply utilizes the

original boundary condition and the elements of the matrix operator

[A..]:

ij
n+2
A aj =k_(h(t) - Bl)
j=1
n+2
or z Ant2, ﬁj =k (g(t) -1 ,,)
j=1

with the linear boundary conditions. This does not imply that the
boundary conditions need to be linear. Consider the dimensionless
equations governing the laminar flow of a fluid through a pipe in which a

chemical reaction is occurring at the wall:

2

(1-r") 8c _ 1 (4L) 1 8 (rdc)
8z Pe Dt r dr or

c(r,0) =¢ (r)
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2 e (L,2)_ ac(lz)
“Pe Bdr = z+c:(l,z)
We could let
13_-_!:1
t(rz)=%(l,z2) + (1 - r0) Z a; (z) P, (%)
i=1

with P.1 (rz) defined by

1
S P, (%) P, (r2) (rdr) = 6.,

o Y

such that the nonlinear boundary condition is given by,

nt+l -
2 A %1 %0l
Pe nt+l, i 1 a, + cn+1
i=1
where Pe = V2, max Dt/D » @) T k/ (v z, max ref) » and @ = K/cref' )

Orthogonal collocation would apply to this simple parabolic partial dif-
ferential equation, and the nonlinear boundary condition would present
no difficulty.

Be definition of partial differentiation, we know that

(39)
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such that our original nonlinear parabolic PDE can be written as

4 ( Y n+2 +2
u ~
= (f(Z 13J . EA G B g £) ) (40)

1
: J=1

(in vector notation) where the initial conditions are obtained from
a (x,0) = ¢ (x)
as u(x.,0)=1, (0) = x.) .
( j ) J( )= 6 ( J)

The important questions surrounding the method of orthogonal
collocation are the following:
(1) convergence of ﬁj (t) ~u (xj, t)
and u(x, t)—™u (x, t),

(2) bounding the error between a (x, t) and u (x, t) for
a particular number of collocation points,

and (3) numerical stability in integrating eq. 40 numerically.
Error bounds are discussed at some length in Chapter B, and the
question of numerical stability is investigated for a particular class of
problems in the following presentation of illustrative applications.

We can show quite easily that the question of convergence of the
orthogonal collocation solution is closely related to the question of the
convergence of the solution obtained by Galerkin's method. The relation
depends on the connection between orthogonal collocation and the general

class of Gaussian-like quadrature schemes. The particular quadrature
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weights are positive and can be calculated knowing only the collocation

points (21):

n-i-k
n-+

(n+k)
Z Wi f (xi)

1 . :
S w(x) £ (x) (x° " dx) =
(o] .
i=l

(n+k)

The calculation of the quadrature weights, 'Wi , depends on the fact
that the above approximation is exact for all f (x) which are polynomials
of degree less than or equal to 2n+2k (for a quadrature scheme which

uses n interior points and k of the end-points of the interval—03 1, or

2):

v 1 . .
(S w (x) o1 (xa'-ldx) y= W§n+k) ) [x}-l]
(o)
such that

(n+k)
i

1 .
(W y = [Q]“1 ( g w (x) xl-l (xa-ldx) )
o

The above feature implies that orthogonal collocation is, for fixed

n, a highly accurate approximation to Galerkin's method.

1 n+k
{ woor 0rEEY] 2 - z W™ B R (G0, 0] + 2™
o
j=1

In proving convergence of the solution obtained by Galerkin's method,

one requires that
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ml

w (x) P, (x) R[ (x, t)] (x> ax)
o]

be identically zero for i=0, 1,..., (n-1). In the quadrature, Stieltjes

Ehﬂ

theorem (1) states that the quadrature error, , goes to zero as n

goes to infinity (provided the residual function be continuous). Since the

(ntk)

matrix [Wj Pi(xj)] is invertible, we find that as n goes to infinity

( in applying Galerkin's method) that

R['ﬁ(xj,t)] =0 .

That is, if the approximate solution satisfies Galerkin's method, it
must also satisfy the orthogonal collocation method. This observation
makes available to us all the previous work done on the convergence of
Galerkin's method for nonlinear parabolic PDEs. (3, 4, éb, 9)

A simple illustrative example has been selected to exemplify the
role that numerical stability plays with the method of orthogonal collo-
cation. It is important to understand how the method of orthogonal
collocation effects the numerical stability of a parabolic partial differ-
ential equation. By replacing the spatial differential operator by a
matrix operator, one should expect the numerical stability to depend on
a property of this matrix. For a particular geometry, the matrix
elements will depend on the collocation points or more specifically the

orthogonal polynomials themselves.
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Consider the following parabolic partial differential equation:

2
d8u _ 8 u
3t = ,82 + f (x, u)
X
8u (0, t) _
Ox =0
1 8u(l,t) ]
= Bx +u (1, t) = h(t)

u’x, 0) = ¢ (x)

Orthogonal collocation approximates this problem by,

dﬁi nil
T - Z By &, + ey &)
j=1
n+l
1 - e
a Z n+l,j u] + un+l = h(t)
j=1

a.(0) = ¢ (x,)

where ﬁi (t) approximates u (xi, t). The 'boundary condition approximate'

b lved icitly for u t):
can be solve explicitly for A (t)
T

a h(t) - Z An+1,iuj
i=1

un+1 (¢) = A
n+l, n+l
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such that

du, -1 B, A .
5 =) By - ol oty g +rx,5) + 200 (41)
j=1 1 n+l, n+l J vt n+l, n+l

with Tzi (0) = ¢ (xi). We abbreviate the working equations (eq. 41) as,

du,
i - -
dt - 2 Nij uj + f(xi, ui) + g (t) (42)
j=1

u. (0) = ¢ (x,)

The stability analysis for most nonlinear ecjuations is, by
necessity, the result of linearizing the equation(s). Let ﬁi be the exact
solution of eq. 42 and let (ﬁi - ei) be the numerically calculated value of
the solution. Then

—é% (W, -e)_ z N;; (aj - o) + f(x, & -e) + g(t) +0 (AtP)

j=1

where p depends on the numerical method used to integrate eq. 42. For

small At, one has

@ - i N ey [0 By = £0x - e ]
j=1

By linearizing the nonlinear function (about ﬁi by using a Taylor's series),



53

de, : 5 f LLY
— = Z [N“ + l 6” ] e. = M“(t) e,
dt ij du ju=u,-e, 1ij j ij j
. i i .
J=1 J=l
of -4 (e),
T (M] (e}

Nij depends on the particular orthogonal polynomials chosen, and the
stability analysis further depends on the numerical method used to inte-
grate the equations. For simplicity, we investigate the improved Euler

method (10) which can be symbolically represented as:

. . (o) - (o) _ 1

Predictor: vy ' [(n+l)At] = Yoel - Yn + 4t Yo
. (m+1) _ At (m), '

Corrector: Y el =Y, + > [y n+l + Yn]

The method is explicit if the corrector is utilized only once per time
step, At. Corresponding to the explicit improved Euler method, the

errors are governed by the following set of algebraic equations:

(e 1) T (o)t % {[Mnﬂl ([1] +acim 1)
+ [Mn]} (e, )

where [Mn] is evaluated at nAt and [Mn+1] is evaluated at (n+l) At
(o)

using Yo+l

This set of algebraic equations is satisfied by solutions of the form
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(e ) = e ] withek:k ey for k¥l

and n corresponds to nAt

where the ej's are constants determined from
-en-l-l 1 o en 1 -
1 1 ¢
en.*-1 en At
2 = 2 o5 M ] At (M, 1M ]+ [Mn]}

but
" n+17] B " n T
e, e T e
n+l e O n
e, - 2 e2 - [e] (en)
L - _ JL
As a simplifying assumption, we take
M . ]1=[M]+At 4 [M] +0 (Atz) (43)
n+l n dt n

and then use eq. 43 for Mn+l in the equations for ( e” ) such that

(] (P y= (e yw BEFatm ] vae (G v ] + M) IMT)

+an’ (5 M) [Mn]} (e )
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For problems where the solution changes slowly over the time imterval

[t, t + At] one could neglect the effect of a—f— [Mn] ,

{e] (en) = (en)+5-‘2-'i Z[I]-!-At[Mn]} [Mn] (™)

or At {[Mn] + éz—t [Mn]z} (en y = {[e] - [I]} (en ).
Using the folowing vector norm
vyl = max|v]|
i

then,
seifim) + Fag Yoyl = ffa-mely

The definition of the corresponding natural matrix norm is (8);

sup  [IC](x} | n
NHiel |l = (% X = X C..
0= gyxd M x0T, i ;‘ i |

such that

At ||{[Mn] + ..Aiﬁ [Mnlzl (Il = -II{[e] - [I]}(e“ ) ||w.
el

IRCE I

< Ml Lel -0 HI 11 ¢e® )1l -
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As discussed by Hildebrand (7), if one is to have numerical stability

|ej| g 1 (j=1,...,n) is required.

- = -1} g o+ 1
|| [e] - [1] ||w mait,x|ei | s miaxlel_l < 2

At 2
At (M ] +=[M] n
such that ”{ L 2 = .S(e )Hw €2

Il ey Il

With

[1{ime) + 5 )% e
Hee™yil

00 At 2
< HIM )+ BEM 1
if [Mn] is bounded, there will always be a value of At small enough to
guarantee that
At 2
= . 4
at |l M ] +5M T | <2 (44)

The stability criteria of eq. 44 can be related to the eigenvalues
of the matrix [M ] + = [M ] A corollary of Geishgorn's theorem (7)

states that,
w(iv ] +55 M 1%) < | ] +5E M 120
where the spectral radius, p, is defined by

u([M]’r-—-[M] %)= max |\, ([M]+—-[M] 4
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The values A, are the eigenvalues of the matrix, [M ] + At [M ]
and may be complex valued—that is why we measure the modulus of

the A\ i Eq. 44 can then be augmented to utilize the spectral radius,

At [max | x; |]<At||[M]+ [M] I, <2

The stability criteria involving the spectral radius has been presented
previously as a necessary condition(14) and indicates that larger values
of At are stable for integration (than indicated by the matrix norm).
Although the matrix norm gives a more conservative crite.ria (and this
is due to the particular analysis involved) it would require much less
computation time to use than would the calculation of the modulus of
the maximum eigenvalue. This is an important consideration.

In the stability criteria just discussed the numerical factor of
2 is particular to the method of numerical integration that was investi-
gated. For Hamming's predictor-modifier-corrector method (10), the
factor would be roughly . 85.

We stated initially that the stability criteria should encompass
some characteristic of the orthogonal polynomials. It has been shown
that this characteristic is the maximum eigenvalue for the matrix
operator (or an approximation to the maximum eigenvalue). Consider

the simple example of

At [max | ki([N]) l< at]|IN}]| <2
i [+ o}
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and the polynomials defined by

1
2 2 2 2 _
So(l-r )P.l(r )Pj(r ) (r dr) = Gij

with a = 27.65 and o (eq. 41). The following results have been obtained

(for n = 6):
a max | ki([N])l IHIND |
i o
o0 1150 1482
27.65 570 677

By neglecting the nonlinear term, these results are applicable to a
simple parabolic partial differential equation that appears in the next

subsection. For this example the use of the simplier expression
at || [N]]] <2 (45)

gives conservative estimates of Atmax’ but they are very close to the
actual At .
max
Values of the norm, ||[N]|| . are shown in fig. 12 for several
o0

different polynomials. For all polynomials studied, as n increases, the
value of the norm increases. That is, as n increases, one finds that
the stability requirement becomes more stringent: At has to be decreased.
One also finds that the stability requirement is far more stringent for

the Lengendre polynomials than for the Jacobi polynomials. It is

interesting to note the stabilizing effect of a finite film coefficient at the
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—— Legendre
------ Jacobi

o film coefficient,
20,000t infinite
A — finite(55.3)

—

1INl [y

10,000 / é

Figure 12. Matrix norm of eq. 45 versus n (spherical geometry).
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boundary.

With the nonlinear function, f(x,u), present, it is difficult to
predict how the stability requirement can be met: [Mij] depends on the
solution itself. It is possible to control At and assure stability by
utilizing eq. 44 as part of the numerical solution. For the applications
(nonlinear) discussed in the following subsection, we have used a Lewis
number of . 85 and have predicted the stable value of At from equation
45. With smaller Lewis numbers, the temperature function and the
rate expression (highly nonlinear) will dominate the stability criteria in

a manner which would have to be periodically checked.

5. Applications of Orthogonal Collocation—Parabolic Equations

To illustrate the method of orthogonal collocation for nonlinear
parabolic partial differential equations we study the unsteady diffusion
of mass and energy within a catalyst particle. Due to the nonlinear
dependence of reaction rate on temperature, the coupling between mass
and energy transport can yield unusual behavior: for example, the max-
imum temperature achieved during a transient can exceed the maximum
steady-state temperature and cause catalyst damage. These equations

arise in some models of chemical reactors (16):

N 2
1 97T 1 9 8T 2
4 Bt 2 or )y oPgcexnlv/|T) - 1) (46)
2 8c 1 9 (rz 9c) 2 .
©F B "3 o or - ¢ e/ -1) (47
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with T(r, 0) = &(r) ; -g-?-(o. £) = 0
r
er,0) =¥ (r)  T(0,5)=0 (48)
and - 9T _ Nu
T (10 =82 (a0 - g (49)
dc _Sh
- 55 (L) =5 (c(1, ) - h(t) (50)

.65, N1=705, N2=1225.

m
]

In practice, the quantity of interest is the flux of mass and energy to and
from the catalyst. Consequently, we compare the accuracy of different
calculation methods by comparing the flux.l We also compare the com-
putation times for the various methods. Even a small reactor may have
75 catalyst particles (16) and this makes the time savings discussed
below for a single particle quite significant.

Because of the conditions placed on T(r, t) and c(r, t) in eqs. 48-50,

one might assume the following form for ’i‘(r, t):

I,
T(r,t)=T (1,t) + (1 - rz) Z ai(t) Pi_l(rz)

i=1

We investigate the use of the polynomials defined by eqs. 33 and 35 (a=3).

The approximate solution, Ti , is governed by a system of equations

similar to eq. 40,
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N, dF b1

T " ) By Ty 8% €, exp(r(1/|%,| - 1)) (1=1,....m) (51)
j=1
N, dé ntl
2 i -~ y R - .
‘D T Efl = Z Bij cj -¢ CH exp(-Y(l/lTil - 1)) (i=l, ..,n).(52)
j=1

is governed

Like eq. 15, [Bij] is a square (n+l)-element matrix. Tn-i-l

by the boundary condition. For a boundary condition of the first kind,

Tn+l = T(1,t) =T (1,¢).

With a boundary condition of the third kind, eq. 49, we have

wtl .
-~ - -—ll _
- Z A1, T57 7 Thyy - 88) (53)
=1

and Tn-l-l is an unknown function of time.
The system of first order ordinary differential equations, eqs.
51 and 52, can be integrated numerically using any standard method of

integration. A simple explicit forward difference would replace eq. 51

by
T : - F n+l
1 i, m+l i,m _ ~ 2 . 4 -
4 At - Z ByTimtehR € m explv(1/]T, [ h-1)) (54)
=1

Finite difference methods will lead to similar equations except that the

matrix B will be sparse (and usually of a definite structure such as



63
tri-diagonal). In the orthogonal collocation method each element of B
is non-zero. This difference in the B matrix (and the A matrix as well)
arises because finite difference schemes are local methods while ortho-

gonal collocation is a global method:

8 u 1
Finite difference: —; i [ ] [ ] [ ]
ax? | %t axt ELT RN 1 ek
Orthogonal 82 it
collocation: —— = Z
8x2 t
k i=1

Equivalently, with orthogonal collocation the derivatives at xj depend on
the values of the solution at every collocation point, not just three as in
the é.bove finite difference example. As a consequenée of this very im-
portant difference, one usually finds that a small number of collocation
points will give very good solutions to most differential equations.

Of the many methods for integrating eqs. 51 and 52, we have
chosen Hammings predictor-modifier-corrector method, O(At)s, and
the improved Euler method, O(At)z. Because of the exponential non-
linearity in egs. 51 and 52, it is desireable to evaluate the right-hand
side as few a number of times per At as possible. This requirement
excludes the 4-th order Runge-Kutta methods (which use four evaluations
per At). Both of the methods used require only two evaluations of the

nonlinearity per time step.
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a. linear diffusion
We first apply orthogonal collocation to the unsteady-state dif-
fusion in a slab. Liu (12) has previously compared finite difference

methods for this problem.

:T“(o,tpo, ud,t) =1, ulx,0)=0

The Jacobi polynomials and Hamming's predictor-modifier-corrector
method (10) are used.

The value of the solution at the collocation point was compared to
the exact value given by an infinite series and the errors are shown in
Table 5. A three-term expansion is accurate within 0.02% and a six-term
expansion gives six digit accuracy. For smaller times than those shown
some error occurs due to the discontinuous initial conditions‘, as in
finite difference methods. The computation times can be reduced by
using another method of integrating ODEs. It was also found that one
can use a step size relatively close to that predicted by an equation simi=
lar to eq. 45, applicable to Hamming's method.

It is clear from Table 5 that the orthogonal collocation method
can give accurate results. Comparison with the calculations reported
by Liu (12) shows that the collocation solution is more accurate than

finite difference solutions which use three to twelve times as many spatial

grid points.
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Table 5

Pointwise Error for Linear

Diffusion Problem

n
n  Computation time At -11; Z |a (xi, t) - u (xi, t) |
(Sec, on IBM 7094) i=1l
t=0.1 t=0.5
3 0.237 0. 005 .000133 . 000000
6 4. 097 0. 0005 .000000 . 000000

b. boundary condition of the first kind
We consider next the diffusion of mass and energy in a spherical
catalyst pellet with an exothermic first order irreversible reaction. The

equations are given as eqs. 46-50 with

T(r, 0) = 1.05, c(r,0)=1.00, T(1,t)=c(l,t)=1.00

and ¢2 =.25 B=.6, and Y = 20. The collocation equations are given

by eqs. 51 and 52. This problem represents the response to a step
change in temperature and the solution approaches the first steady-state
solution as discussed in subsection 3. Calculations are made using ortho-
gonal collocation and finite difference methods. For a reactor model

the flux at the surface of the individual particles is the most important
quantity and is expected to be less accurate than the temperature and

concentration values themselves. For the collocation solution the flux
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is given by

n+l

8T - ~
or 'r=1 _Z An+1,j Tj (54)
j=1

For the finite difference solutions the flux was initially evaluated by
a two-point difference. This proved to be so inaccurate, however, that

another means was devised. If eq. 46 is integrated over r one obtains:

aT

1N
=, - S [F & - s®scexplvviT| - 1) )] (rldr). (55)

4 Bt
0o

Simpson's rule was used to calculate the integral, and this gives a more
accurate representation of the flux for coarse grid spacings. The collo-
cation solution gave nearly identical results using either eq. 54 or 55.
Finite difference solutions are identified by the grid spacings (Ar, At)
and collocation solutions by the number of collocation points and step
size (n, At).

The collocation solution was calculated using Jacobi polynomials
and the equations were integrated to t=5 using Hamming's method. The
finite difference scheme used on this problem was Liu's method (see
Appendix 1) which is an accurate, stable explicit scheme (12). Calcu-
lations for this problem were made on an IBM 7094 computer.

Exploratory calculations, Fig. 13, indicated that the development
of the solution in time was relatively smooth except for small times.

The large oscillations in the approximate initial condition arise because
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Figure 13. Temperature profiles for various times. (Using
Jacobi polynomials, n=6, Hamming's method,
At =0.05)1 to 9 correspond tot =0, 1, 5, 10,
25, 50, 75, 100, and co.
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one is trying to approximate a step function with a low order polynomial.
These oscillations die out rapidly (t< 1) and have little effect on the solu-
tion fort >1. At the collocation points the temperature equals the initial
condition value as would the temperature function in a finite difference
solution. With a finite difference solution, one merely draws a curve
through the solution; while with orthogonal collocation the 'curve' is
already specified. To approximate temperature functions with steep
gradients more terms are needed, as is shown below. Because of the
smoothness of the solution for t > 5, and the fact that the steady-state
had a dimensionless time of the order of 100, it was decided to limit all
further computations to t< 5.

A comparison of the collocation solution (6, 0. 05) to the best
finite difference solution (0.01, 0.005) showed that they agree to within
four or five digits. As n increases to eight and ten, the agreement in-
creases to five or six digits. The behavior of the surface flux under
different conditions is shown in Tables 6 and 7. The collocation method
(n = 6) gives the surface flux within one-half per cent whereas the finite
difference solution (Ar = 0.05) is in error by 3%. Att =1, the collocation
solution with n = 10 gives better results than the finite difference solu-
tion with 1/Ar = 100, demonstrating that the number of collocation points
can be about ten times less than the number of finite difference grid
points for equivalent accuracy. For the same At the collocation method

with n = 8 uses about the same computation time as the finite difference



69

Table 6

Collocation Surface Derivatives

Computation
Time (Sec on
Surface Heat Flux IBM 7094)
n At t =1 t = 5
6 .05 0.3419 0.1570 4.8
8 .01 0.3430 0.1570 27.7
10 .01 0. 3431 0.1570 39,2
Table 7

Finite Difference Surface Derivatives

Computation
Time (Sec on
Surface Heat Flux IBM 7094)
Ar At t = 1 t =5
.05 .01 0.3537 0.1579 25.7
.025 .005 0.3465 0.1575 101.3
.01 .005 0.3449 0.1574 251.2

method with 1/Ar = 20. This provides a quantitative comparison of com-
putation time when the matrix B in eq. 54 is tri-diagonal or ccmplete.
In this case the collocation method would be preferred because it is more

accurate.

Figure 14 shows the error in the surface flux as a function of

computation time. The values are compared to the average of the best
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Figure 14. Estimated error in the temperature surface flux versus
computation time (t = 1. 0).
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finite difference and best collocation solutions (they differed by about
19). The triangle symbols represent the values in Tables 6 and 7. For
the collocation method the optimum At was just below the value of At for
which the problem became numerically unstable. Further decreases in
At, or increases in computatipn time, caused little if any change.

It is clear from Fig. 14 that the collocation solution is much
faster than a finite difference solution of comparable accuracy. If the
various solutions are compared to the best solution obtained using the
same method, the collocation solution (6, 0.05) is about twenty times as
fast as a finite difference solution (0. 025, 0. 005) of about the same ac-
curacy. In this case the speed advantage is due to the ability to take
larger time steps in the collocation method, and this is made possible

due to the smaller number of terms necessary to obtain the solutions.

c. boundary condition of the third kind
For this case we have boundary conditions given by eqs. 49 and
50.

g(t)=1.1, h(t)=1.0, Nu=55.3, Sh=66.5 (56)

The boundary condition, eqs. 49, 50 and 56, are satisfied by eq. 53 with
a similar equation for concentration. The initial conditions are taken

as the two-term approximation to the intermediate steady-state solution
for the problem with infinite Nu and Sh. The 10% temperature pertur-
bation on the boundary is sufficient to drive the solution to the third

steady-state.
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Collocation solutions are derived using Jacobi, Legendre, or
Chebycheff (w(x) = 1/ (1 - xz)% ) polynomials and either the improved
Euler or Hamming's method of integration. Calculations are continued
until t = 35. Finite difference solutions are obtained using Liu's method
and the implicit method. In the implicit method the boundary conditions
are handled using a false boundary to retain the second-order truncation
error and the reaction rate term was evaluated at the previous time, as
was done by McGuire and Lapidas (16). Calculations were done on a
CDC 6400 computer, which proved to be about twice as fast as the IBM
7094 for these problems.

Exploratory calculations, Fig. 15, indicated the solution had
large spatial and time derivatives. Consequently, we expect that more
terms are needed to approximate the solution. Experience showed, too,
that even though the temperature was approximated within two to three
digits using 6 to 10 terms and the Jacobi polynomials, the convergence
with n was rather slow (see Table 8). If Legendre polynomials are used
instead the convergence was much faster. This is probably due to the
fact that the Jacobi polynomials weight more heavily the region away
from the boundary due to the factor (1 - rz), whereas the Legendre poly-
nomials give equal weight to all regions (except for the skewness
introduced by the spherical geometry). In boundary conditions of the
third kind, the temperature at the boundary is not known, so that better
results for the flux at the boundary are expected if the region near the

boundary is emphasized, or at least not de-emphasized.
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T(x,t)

O : - + i
1 O 2 4 6 8 10

Figure 15. Temperature profiles for various times. (Using
Jacobi polynomials, n = 6, Hamming's method,
At = 0.05) 1 to 6 correspond tot =1, 10, 15,
20, 25, and 30,
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It was found that Euler's improved method of integration gave
accuracy comparable to Hamming's method, took about the same compu-
tation time for the same At, but allowed time steps about twice as large.
Consequently, Euler's improved method is preferred for these problems.

If one looks at the difference between the surface derivative for
a collocation solution and the best finite difference solution as a function
of time, one finds the type of behavior exhibited in Fig. 16. The spike
at t = 5 should be ignored since it is in this region that the surface
derivative passes through zero. Three characteristic values can be

associated with Fig. 16:

(i) 1let E1 = typical error for 0 < t < 15

(ii) let E maximum error for 15 < t < 25

2
(iii) let E

3 typical error for 25 < t (57)

Comparison of Figs. 15 and 16 shows that the error E2 arises when the
temperature incréasee rapidly in the particle. Using these values one
can summarize the effects of the integration scheme, the expansion
functions, and the step size as done in Tables 9 and 10.

Based on the ;'esults for the problem with boundé.ry condition of
the first kind, it was felt that the following choices of grid spacings
should give representative results for the finite difference computations;
(0.05, 0.05), (0.025, 0.0025), and (0.01, 0.005). Additional values

were not examined because of the excessive computation time necessary

to use the finite difference methods.



ERROR(%/0)

75

Figure 16.

Estimated error in the surface flux as a function of
(Using Legendre polynomials, n = 6, Hamming's

time.
method, At = 0. 05).
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Table 8

Heat Flux from Catalyst

Flux
Polynomial n At t = 22 t = 35
Jacobi® 6 0.05 2.348 4. 241
Jacobi® 8 0.025 2. 857 4.594
Jacobi* 10 0. 025 2. 489 5.078
Legendret? 6 0.10 2,477 5.159
Legendret? 8 0.05 2.539 4.956
Legendret 10 0.04 2.572 5.042
Legendret 12 0. 025 2.584 5.024

*
Jacobi results using Hamming's method

t Legendre results using Euler's modified method

The comparative errors for the classical implicit method
(Table 10) are indicative of the unacceptable pointvéise errors. Based
on Liu's comparison of his own method to the implicit scheme (12), and
the errors found in Table 10, it was decided not to use the implicit
method further.

Based on the data in Tables 8 and 9 the improved Euler method
is recommended over Hamming's method for integration of the ODE.
For boundary conditions of the third kind Legendre polynomials are

recommended over Jacobi polynomials. Comparison of the collocation
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solution, entries 10 and 11 in Table 9, with a finite difference solution
of comparable accuracy, entry 3 of Table 10 reveals that the collocation
solution is from twenty to forty times faster. This advantage is due to
the larger time step and the smaller number of terms in the collocation
method (10-12 rather than 40-100). It is also clear from this problem
and the previous one that large computation times are necessary to
model nonisothermal diffusion with reactions of this type, and that the
savings made possible by the collocation method is especially welcome
when several of these problems must be solved as in the case in the

reactor model.
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Table 9

Representative Error Estimates for Collocation

Surface Derivatives

Compu-
tation
E E E Time

n At Integration Functions 1 2 3 (Seconds)

6 .05 Hamming Jacobi 1.5% 19.6% 15.5% 11.9

8 . 025 " " 1.0 15.6 8.6 30.6

10 . 025 " n <1 12.0 1.0 41.1

10 .01 " " <1 12.0 1.0 98.0

6 .05 " Chebycheff < 1 7.1 9.8 11.9

6 .05 " Legendre <1 7.2 2.7 11.9

8 .025 " Legendre <1 2.4 1.4 30.6

6 .10 Euler Legendre <1 8.0 2.7 5.1

8 .05 " " <1 2.4 1.4 13.3

10 .04 " L <1 1.8 .34 21.8

12 . 025 " " <1 1.4 .02 45.6

Table 10
Representative Error Estimates for Finite
Difference Surface Derivatives
Method of E E E Computation
Ar At Integration 1 2 3 Time (Seconds)

0.05 0.05 Implicit 6% 15% 20% 11
0.05 0.05 Liu's 2 7.4 1.5 21
0.025 0.0025 " <1 2.8 .1 830
0.01 0.005 " - - - 1050
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6. Summary

In examining the dimensionless mass balance for an isothermal,
second-order chemical reaction (using the method of collocation) we
succeeded in illustrating the characteristics of a good approximate
solution (the power series expansion): the solution exhibits numerical
convergence and the residual function approaches zero as we increase
the number of collocation points. We also see that a poor approximate
solution does not possess these characteristics.

We then discussed Villadsen and Stewart's method of orthogonal
collocation. The method of orthogonal collocation reduces an ordinary
differential equation to a coupled system of algebraic equations. The
differential operators are transformed into matrix operators. We
derive an explicit expression for the matrix elements (as compared to
the use of matrix inversion by Villadsen and Stewart). For boundary
conditions of the third kind we propose the use of a type of Legendre
polynomial as the expansion function in the approximate solution. With
boundary conditions of the first kind the Jacobi polynomials should be
used. We then applied the method of orthogonal collocation to a non-
linear ordinary differential equation, eq. 23. The approximate solution
of the surface flux is compared to the surface flux as obtained by a finite-
difference solution. The method of orthogonal collocation requires 1 to
1 the computation time of the finite-difference method and is more

accurate.
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The method of orthogonal collocation was then developed for
nonlinear parabolic partial differential equations. We suggested the
use of different orthogonal polynomials for different combinations of
boundary conditions at x = 0 and x = 1. The method of orthogonal col-
location transforms a nonlinear parabolic partial differential equation
into a system of first-order ordinary differential equations. We show
that the convergence of the approximate solution obtained by Galerkin's
method is a sufficient condition for the convergence of the approximate
solution chtained by the method of orthogonal collocation. The system
of first-order ordinary differential equations can be integrated by any
appropriate technique. We investigated the relation between numerical
stability as the equations are integrated in time and the step size, At,
for the system of equations resulting from a simple semi-linear para-
bolic partial differential equation. For the integration scheme referred
to as the improved Euler method we derived a stability criteria, eq. 44.
For the linear diffusion problem we show that the use of the Legendre
polynomials and the improved Euler method requires a more stringent
step size than does the use of the Jacobi polynomials and the improved
Euler method.

The method of orthogonal collocation is applied to the coupled,
transient mass and energy balances for a nonisothermal, first-order
chemical reaction in a spherical catalyst particle. We calculate the

approximate values for the surface flux (heat) and compared these values
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with those obtained by Liu's finite-difference scheme. The method of
orthogonal collocation is from 4 to 40 times as fast as the finite-
difference scheme for comparable accuracy. Although we illustrate
the method on specific differential equations, the results seem to be
consistent: the method is fast with respect to computation time and

very accurate (as deterniined either by an error estimate or error

bound).
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CHAPTER B

Error Bounds for Approximate Solutions

While approximate methods are used quite frequently in solving
differential equations, there has been too little progress made in the
error analysis of such methods. An error analysis provides some
rigorous measure of the discrepancy between the approximate solution
and the exact solution. We refer to such a fneasure as an error bound.
We are interested only in those bounds which do not require the exact
solution to be known since in most engineering applications the exact
solution is not known. With these types of bounds one simply solves for
tﬁe approximate solution and calculates the error bound. Bounds are
inherently conservative in that they are usually larger than the true error.
While the exact solution satisfies the differential equation exactly, the
approximate solution may only satisfy the differential equation at a few
points in the domain of the independent variables. The approximate solu-
tion only fits the differential equation roughly and this non-zero fit is
referred to as the residual function. The residual function is one of the
most natural concepts associated with the approximate solution, and we
show that it can be an important part of an error bound.

In reviewing the literature one finds that a small residual is
recognized as characterizing an accurate approximate solution but that
few authors have attempted to establish rigorous error bounds which

incorporate this function. Because of the inherent simplicity of the
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residual function, both in form and concept, we chose to direct our
attention to deriving new error bounds which would utilize the information
contained in the residual function. We have considered two classes of
differential equation: (1) systems of second-order nonlinear ordinary
differential equations in which only the dependent variables occur non-
linearily (not the derivatives of the dependent variables) and (2) systems
of semi-linear parabolic partial differential equations. .The first class
of equation corresponds to the type of problem involved in distributed
parameter systems while the second class corresponds to the transient
transport equations. We derive both a pointwise error bound and a mean
square error bound for the problems of class (1) but only a mean square
error bound for the problems of class (2). The error bounds for the
ordinary differential equations are very good for the applications which we
have considered (0.0l % to 0.0001% error using three collocation points
in the method of orthogonal collocation). We outline the application of the
error bound for problems of class (2) by considering the coupled, tran-
sient heat and mass balances for a nonisothermal, first order chemical
reaction in a spherical catalyst particle. These new error bounds provide
an unequivocal means of comparing different approximate solutions to an
equation, for examp\le using different expansion functions. Being able to
obtain an approximate solution and to know its accuracy represents a

significant advance in the field of approximate methods ~f solution.
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L. Backiround

In obtaining approximate solutions to differential equations, one
needs to consider the amount of error associated with the approximation
method and its solution. There has been much published in the last five
years on the subject of bounding the error between the approximate solu-
tion, ;'r(zc_), and the exact solution, y(x), of a differential equation. These
reports have dealt primarily with the pointwise error bound, eq. 1, and

the weighted, mean-square error bound, eq. 2.

max|y(x) - y(x) | (1)
xe
Py
(S(?@ - yx) )2 wix) ax ) (2)
Q

Before considering the extent of the available results, let us consider a
concept that is often presented as an error bound.

In many numerical studies the error associated with a solution
is estimated. A simple example of an error estimate is provided by the
following: having replaced the heat equation by a difference equation,
one solves the resulting algebraic equations for several different mesh
spacings, (Ax, At). The solutions are then compared. If the solutions
differ in only the fourth decimal place, we can estimate the error to be
0(10-4) for a solution of 0(l). This is called an error estimate, not an
error bound, because there 18 no theoretical reason the error is actually

4

less than or equal to 0(10 '), This comparison only serves to charac-

terize a convergent numerical scheme.
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To derive an error bound, various features of the problem must
be considered: the type of equation, the degree of generality associated
with the equation (viz., variable coefficients versus constant coefficients),
the nature of the auxiliary data (viz., boundary conditions), the method
used to approximate the solution, and the degree of differentiability . .
required of the exact solution.

The following presentation of error bounds serves two purposes:
(1) to support the contention that many numerical problems could be
accompanied by an error analysis and (2) to indicate the different types
of error bounds. Error bounds have been obtained for various types of
problems using various methods. Linear ordinary differential equations
with variable coefficients were investigated by Vainikko (34) while
Karpilovskaya (20) investigated a particular linear elliptic partial differ-
ential equation. Both authors obtained asymptotic error bounds (similar
to eq. 3) for the approximation method referred to as collocation.

-r-0

max [y(x) - y(x)] = O(n ) (n,z,a > 0) (3)

xe Q

In eq. 3, n is the number of collocation points, r is the degree of con-
tinuous differentiability of the exact solution, and & is the exponent for
a Lipschitz condition on the r-th derivative of the exact solution. These
results were obtained by combining the existance of certain Green's
functions with the theory of approximation. This type of bound, eq. 3,
assures convergence of the approximate solution to the exact solution

and indicates how fast the error decreases as n, the number of collocation
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points, increases. For both studies the collocation points are roots of
an (n + l)-th orthogonal poiynomlal of an appropriate set. Notice that
for fixed values of r énd ® eq. 3 indicates that all selections of n
cc;lloca.tion points are asymptotically equivalent with respect to the error
generated. As a result, this type of error bound does not allow the com-
parison of errors with different collocation points for small values of n.
Numerically, we are usually interested in using as few collocation points
as possible while obtaining the desired accuracy.

Another error bound measures the error in terms of how close
the boundary data is approximated and how close the residual function
is to zero. This type of bound is derived using both standard integral
inequalities and Green's identities. This method of bounding the error
has been used on fairly general elliptic and parabolic partial differential
equations ‘(1, 2,6,17, 24, 25,30, 31,32, 33), but does require that the approxi-
mate solution possess at least first order piecewise continuous deriva-
tives. Sigillito investigated error bounds for parabolic partial differential
equations in which the solution, u(x,t), appears nonlinearily (30, 31, 33).
Bellar(l, 2) investigated equations in which the solution and the gradient
of the solution, u(x,t) and \v/ u(l:., t), appear nonlinearily. Much of the
work in this area has been done by Bramble, Payne, and Weinberger.

Recently there has been considerable interest in the application
of Galerkin's method and the derivation of associated error bounds (15,
18, 26, 28, 29,36). Denote by Hn the subspace spanned by the expansion

functions occurring in the expression for the approximate solution. The
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associated error bounds are then usually expressed in a manner similar

to eq. 4,

Iy -yll< inf  [y-v] (4)
veI-In

which involves the 'minimum distance' between the exact solution and the
subspace Hn as measured by a particular norm. The ability to derive

a bound for the right-hand side of eq. 4 from approximation theory depends
on the properties that the exact solution is assumed to possess. The
right-hand side of eq. 3 is such a result and the exact solution has been
assumed to possess r-th continuous derivatives. Many such results are
available for the approximation of a function of one variable by polynomials.

Several other methods have also been studied and offer equally good
results: the Newton-Kantorovich method(3, 4, 23), fixed-point theorems
(21), the use of interpolation spline functions(5, 9,10, 11,12, 13, 22, 25),
and the maximum principle(l7). Whether a particular method applies
depends on the equation, but if the method applies, one can use the results
for any approximate solution.

All further discussion pertains to the error bounds which measure
the error in terms of the 'fit' of the boundary data and closeness of the
residual function to zero. For approximation methods in which one uses
only a small number of adjustable parameters the residual function may
become quite small for one, two, or more parameters. If this happens,
do we have an equally small error ? This potential has been validated for

the following two particular classes of nonlinear problems and is developed
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further in the sections on new error bounds. Again, we are interested in
showing that for many problems, the error can be bounded by some char-
acteristic of the residual function. Several authors(l6, 19, 21) have
referred to the mean-square integral of the residual as characterizing
the error of the approximate solution. What is shown here is that many
problems have some multiple of the mean-square integral of the residual
as a rigorour error bound, hence increasing its practical value signifi-
cantly.

The first class of nonlinear problem is

1 a-1 du

= R -t = 0 (5)

with the following linear boundary conditions:

IN

du
= () +al)= (6)

ky

du
-5;(0) = 0

If the approximate solution satisfies the boundary conditions exactly, it
follows (as a straightforward simplification) from the work of Sigillito (30)
that the error is bounded by a constant times the mean-square integral of

the residual:

[S [G6-a) 2 ax® < [5 Rlt(x )1" lag? )

where My is the minimum eigenvalue of eq. 8,
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1 d a-1 dv
xa'l' ix (x dx)+Xv- 0 (8)

where v(x) satisfies homogeneous boundary conditions analogous to eq. 6

and M is the Lipschitz constant for f(x,u) defined by eq. 9.
[£(x, vy) - £(x, vz)l < M[v1 - vzl, x¢(0,1) (9)

The inequality of eq. 9 treats f(x,u) as an algebraic function of the real
variable u and must be valid for all u of interest. If nothing is known

about the solution, then -0 < vl, vz < +00., On the other hand, if we

know that 0< u< 1, then eq. 9 need only be valid for this range of

values. The error bound is only valid for A\, > M. If f(x,u) is con-

1
tinuously differentiable in the second argument, the condition for the
validity of the error bound is sufficient to guarantee the uniqueness of

the solution to eq. 5. To see this, assume the existance of two distinct
solutions, u, and u,, both of which satisfy eq. 5 and the boundary con-

2

ditions, eq. 6. Subtract the differential equation for u, from that for u,

(similarly for the boundary conditions):

1 d a-1 d
- (x

a1 ax | & (4, - 9)) - (f(xu,)-Ex,u))=0  (10)
g—x' (uz - ul) (0) =0

2 d

i-cI- dx (uz-ul) + (uz-ul). =0, for x=1.0

By the mean-value theorem for functions of a real variable, eq. 10 is

equivalent to eq. 11 (using the fact that f is continuously differentiable),
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1 d a-1 d of )
xa'-l dx x dax (uZ ) ul)) ) [Bu lu=u* :-[(uz B ul) = 0 (11)

where u® is a function whose values are, pointwise in x, between uz

and u.. We do not need to know u*

L

exists. We do know that

explicitly, but only the fact that it

of
-Mi [Gu u=u*] <t M

such that, by a theorem from Courant and Hilbert(l4, page 41l), we con-
clude that the null solution is the only solution for eq. 11 if Xl> M. If
the null solution is the only solution, then u, is identical to u, and we

have uniqueness for eq. 5.

The second class of problems is

Z (aiju.)j-——-f(f,t.u)= 0 (12)

Sigillito has done studies on eq. 12 for both the first and second initial-
boundary value problems (30,31). These studies show that, if the approxi-
mate solution satisfies the boundary conditions and initial condition exactly,
the error is bounded by a constant times the mean-square integral of the

residual function:

g 1
2 2 1
- <
[g \g (u - u)” dxdt]* < 5T a N
) - o

T
1
[g SRz(ﬁ)eZb(T't)dxdt]z
1 -M o -

% (13)

where a is positive and defined by
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z al v.v, > a ZVZ > 0, (for all real v,)
i j— o i k
iy j i
a_ is referred to as the uniform ellipticity constant for [aY]. A s the

minimum eigenvalue for the following equation

Z @w ).+ Aw=0
11 )
iy
with homogeneous boundary conditions and '"b" is an adjustable parameter

chosen such that the expression

b+ a \ - M
o 1

is positive (b may be zero). M is a Lipschitz constant for the nonlinear

function in eq. 12 such that

[f(g. t, vz) - f(x, t, vl)l <M [vz - vll

If we have f(x,t) independent of u, M is zero.

In the approximation of solutions to differential equations one often
utilizes linear combinations of known functions with unknown expansion
coefficients which may be functions themselves. In this approach one
would like to be able to say how the accuré.cy changes as the number of
terms increases, as different expansion functions are used, or as differ-
ent methods are used to determine the expansion coefficients. The avail-
ability of an error bound serves to answer these types of questions. It is

recognized that in lieu of an error bound, one can estimate the error by
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comparing the results to another solution (viz., finite-difference solution).
Additionally, the error bound could be used to compare entirely different
solutions to the same problem or for finite difference calculations (if one

provides the necessary interpolation polynomial).

2. New Error Bounds for Ordinary Differential Equations

In chemical reaction engineering, one 1s often presented with

coupled chemical reactions that can be described in the following form:

L d_
a-1 dx

(x>} f-‘-:i) - f(c c c)=0 (14)
) - fleprecpiic) =
(j=l,...n; a=1,2,3)

with boundary conditions such as

<

= (0) = 0 (15)
dc

2 j .

= _d_i_ (1) + cj(l) = gj, (j=1,...,n) (16)

With eqs. 15 and 16, one can study an equivalent system of integral

equations rather than eq. 14,

1
c(x)=g. - S‘ G(x, t, Sh) £ _(c(t)) (ta-ldt) (j=1,...,n) (17)
j i, i=

where G(x,t, Sh) is the appropriate Green's function. If eq. 14 is solved

approximately, one obtains

14
a-1 dx

(x e )-fj(El....,cn)s Rj(g)
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where Rj(g_) will be small but not identically zero as in eq. 14.

Similarly,
1
E.(x) =g, - S. G(x, t, Sh) [£.(&(t) ) + R (&)] (ta-l dt) (18)
J J o J= J=.
Assume that fj(yl. oo yn) satisfies a Lipschitz condition of order one in
the Yy!
n
5 - 5wl < ) M Ly - vl 19)
i=1

Then we prove the following theorem:

Note: while this bounds the mean-square error, we later consider the
pointwise error and an appropriate error bound

Theorem Assume the existence of a solution to eqs. 14-16 and require
fj(yl, cees yn) to satisfy the Lipschitz condition (19). Then the error for

an approximate solution is bounded by

1 1 n 1
1 P Y
{ S [ -c,]z(xa-ldx)}" < k (S R.Z(E) xa"1 dx) + k k, (ZS R.Z(E)x:""-ldx)a
o j J - o o J - o) ; o 1=
i=l (20)
Proof: Eqs. 17 and 18 can be combined,
1
2 a-1 2
(€.(x) - c.(x)) = (S G(x, t, Sh) (R, + (£.(T) - £.(c))) (t dt))
J J o J J J
and applying Schwartz's inequality, then
1 1
(2.(x) - ¢, (x))° < S GAx t, Sh)(ta'ldt)S (R +(£ () - £ (e > at)
j j =Y, o 3 = T

such that
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1 1
. . o
le.ll, = (5 (c.-c )2 land< (S S G2(x, t, Shyt®"lar 1 an)?
j o d 3 ) J

e

1
2 a-l
(So (Rj + (fj(g) - fj(s_))) t dt)

If we then apply Minkowski's inequality to the last integral of the above

inequality,
1 1 .
. 2 a-1..% 2a-1_.3
le 1,2 NGt s, (« So R/ (c) £ dt)® + Jo (£(@) - £(ehe™an)

Since fj satisfies a Lipschitz condition, eq. 19, the last integral of the

above inequality can be bounded in terms of the errors,

n \ n l .
lejl,< Bol, iy, + ) MF O § 2 any
i=1 izl ©°

or

n n
e I, < BGILR N, + O MAEC) Te 15)7) (21)

i=1 i=l

n
Abbreviate (z szi) by Nj' then the result of squaring both sides of
i=1l

eq. 21, adding over the subscript j, and taking the square-root of both

sides of the resulting expression is
n . n n .
2,3 H 2.3,2:%
O, e, 1% < loh, IR 1,+N50 I 15372
j=1 i=l i=l

n n n
: 1 1 1
<lal, 10, IR 127 + () e, 15F () N
j=1 i=1 l

j:
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n

— 1
By solving for ( "cjng)z » one can reduce eq. 2l to the final result:

ﬂGﬂ (Z EN Y

(L PR S PRY LN PR = 1 ) (22)
- [, Z )¢
n
with (1 - "an (Z Ni)s) > 0. A somewhat better bound can be obtained
i=l

4
by forming a quadratic inequality in (Z ﬂcj ":)‘2 and solving for the upper

i
bound of (Z "ej " ;)" —but for small residuals, the improvement is

generally negligible

For systems of equations with different Sherwood numbers (Sh),
the Green's function would be different for each equation. For this case
the error bound is derived in the same manner as eq. 22, and the result

is

i 18,12 1o, 1
eI, < oM, ChRyl, + —= , (23)
- [CH AL

=1

If one of the equations of the system (eq. 14) is linear and
uncoupled, that cj can be obtained exactly. Then "ej = 0 and Nj £ 0.

Eq. 22 is also valid for a single nonlinear equation,
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lel, IR,

e ll, < T-MTel,

(24)

where M is again the Lipschitz constant. A result similar to eq. 24 can

be obtained with

1
- of 2 a-1, 1
M= sup (‘S (=1 __ - ) x dx) (25)
0<t< 1 oau usc + t(¢ - ¢)
because
1

~ - of(x, v) 8v - ~

f(4)-£f(u) =S Sv dt, where v=u+t(i-u). (26)

Eq. 25 allows sharper bounds to be obtained—compared to f being
Lipschitz continuous. A similar approach could be applied to systems
of equations as there is a multi-dimensional generalization to eq. 26.

There is a very interesting corollary to the results of eqs. 22, 23,

and 24.

Corollary: The error bounds of eqs. 22-24 imply that the solution to

the appropriate differential equation(s) is unique.

(1

This is quite easy to prove. If there are two solutions, called u' '’ and

u(?.) » let e, = u(.z)- u!l). However "R " £ 0, so that, "e" = 0.
J itz | j'2
For later applications, we require the Green's function in
spherical geometry (a = 3) for the homogeneous boundary conditions

similar to eqs. 15 and 16:



2 1
sh tx- b2 x
G{x, t,Sh) = { 2__ L
sttt ez
such that
2 1 2 1 2 2
"Gﬂz = 30 t Sk (3 ('g-h) t (26)

A good introduction to Green's functions is provided by Courant and

Hilbert (14). For boundary conditions of the first kind, the Green's

function is

-1- -1, t < x
% =
G(x, t) = {
El- - 1, t > x (spherical, a = 3) (27)

We will use two integral evaluations of eq. 27:

|
2 1
K1 = max S G(x,t)t dt = z (28)
0<x<1 o
2
KZ = max S Gz(x, t)tzdt = %-

0<x<1 o

These last two constants, K1 and KZ' are introduced in the derivation of

pointwise error bounds for eq. 14-16, which we now derive.

Theorem If f(c) of eq. 14 satisfies a Lipschitz condition, eq. 19, and

a Green's function exists for eqs. 14-16,

& -c, = max &.(x) -~ c.(x) <aR +b R.
ey -y o = | mox Iy - o | < almy], 21" I,
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Proof: Let Mj = max[M ]. From eqs. 17 and 18,
i it

126x) - ;=] = ’y Glx,t, Sh) (£,(@) - £.(c) + R) ¢ lat|
) . o L J= J

1
< S G(x, t, Sh)(]fj(c?)-fj(c ).|+[Rj ) 21 at

o]

1

a-1
< S; G(x, t, Sh) (Mj Z [Ei(t) - ci(t)l + [Rj[)t
i=1
1
= M, S‘ G(x, t, Sh) Be (t) - c. (t)[ta Lat +SG(x,t Sh)lR ol
i=1

where we have used the fact that the Green's function is non-negative.

Rearranging slightly, and using Schwartz's inequality,

1
- a-1
E(x) - c(x)|< M. Z ‘S G(x,t, Sh)[&. -c. |t dt + K_[IR.
lz; s M o("’hJ L P
i=1
I
n ‘ l
< M, ma. IE.(t)-c.(t)[ S. G(x, t, Sh) ta-ldt + K "R"
- j 0< t< b i o 27732
i=] -
let 1
a-1
K1 = max S G(x,t,Sh) t dt
0<ix<1 o
1
2 -
K, = max S G2(x, t, sh) t*~! at
0<x<1
then

llell<KMZlIell + K, I8 I,



101

n
We need to bound z "ei ﬂw . This can be done by summing this
i=1
inequality over the subscript j and solving the inequality for
n
Z I e "oc The result of this is,
, v n
i=1
: <), 1%, :
j=1 . S\
< - >
Z "‘1"00 < m (with 1-K, ) Mj 0)
i=l 1-K Z M, j=1
1 i
j=1

such that we obtain the final result.

K, M n

c.(x) - K R, 2
i g, - el <k, (IRl + Z &1} (29
l-Kz v

The following two bounds can be obtained by slight modifications of

the above proof:

n

K) M,
Cmax (5 - el <k (IRl ¢ Z IRl 0
- - 1-K Z M =l
B | i
max |¢.(x) - cj(x) | < K, { Mji [[eiu2 + [[lelz}’ (31)

0<x<1 :
- - i=1

Eq. 30 is the result of considering the maximum, absolute value of the

residual function rather than the integral of the square residual. The
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proof is identical to that shown. Eq. 31 results from the use of Schwartz's

inequality for the integrals appearing in the first part of the proof.

3. Application of Error Bounds—Ordinary Differential Equations

The error bounds for the ordinary differential equations given by
eq. 14 are quite easy to apply. This is demonstrated on the following
problems: (1) isothermal chemical reactions with different types of
rate expressions, (2) nonisothermal first order chemical reaction, and
(3) an isothermal chemical reaction system. All of these problems are
considered in a spherical catalyst particle.

For the first problem, assume the boundary conditions are the

following:

dc

I (00 =03 c(1) =1 (32)
If we have the following dimensionless mass balance

d 2 dc
—— x —

( 2 2n+l
dx dx ¢

-% ) = ¢ »(n is a positive integer),

we can shown by the maximum principle (26a) that 0 <c(x)< 1. Then

from eq. 25

1
2 2n,3 2. .3
[) ((20+1) ¢"u n)'u-c~i- t(c-c) :
0<t<1 o - :

1
(2n + 1) q;z sup [ S‘ (c+t(c - c))4n xzdx]
t o -

]
td
[o N

La

L
(20 + 1) $% sup [S ((1-t) ¢ + e8)*" x%ax
t o
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Without knowing c¢(x), we cannot calculate M. But since c(x) < 1, we

can bound M from above.

2

1-\-45- (2n + 1) %— max {1, max [E(x)]zn}
0< x<1 ‘ .

Using eq. 24, we then have the following error bound:

Iz -cll, < — Ir@1,

N9o - -2 (2n+1) max { 1, max [E(x)]zn}
. N3 0<x<1 S

If c(x)<1 forall x in [0,1], then the error bound is valid for

$ < (42;1—_2.?)

This simple rate expression presents a slight problem when the
order is even: CZn, where n is a positive integer. In this case. one
must first prove that 0< c(x) < 1, but a different approach is necessary
since the maximum principle does not apply. We are assuming the
existence of a continuous solution on the interval [0,1). The inclusion
of the left end-point of the interval implies that the solution is bounded
at x = 0. Let us consider the upper bound for c(x). Assume that c{(x)>1
for some x,e [0,1). Then c(x) has a maximum in [0,1) for some x-

1 2!

or
dzc 2 2n
0 > d—z-x = ¢ c at xz. but this is impossible.

Such a maximum cannot occur at x = 0 either:
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2 2

de 2 dc - dc _ 2 2n
0> {5+ T @lxe0 =37 20
dx . dx

(using 1'Hospital's rule), which is also impossible. Consequently,
c(x) <1 for all x in the interval [0,1]. To show that c(x) is positive,

utilize the equivalent integral equation (of the differential equation),

1
c(x) =1 -S G(x, t) ¢2 czn(t) t2 dt
(o]
such that
1
L€ = -S; G (x,t) $° *" (t) ¢2 at

where, from eq. 27, we find that Gx has the following form,

1
-—2-, t-<_x
x
G =
x
0 t> x
such that
x
de .\ _ S 1 .2 2n.2
= (%) 5- ¢ ¢t
o x

from which it follows that the first derivative is non-negative. Having
established that the first derivative is positive, assume the existance of

some x, such that c(xl) = 0. Qualitatively, we have the situation

1
depicted in the following sketch,



105

10

Xf 10

then c(x) < 0 for all re [0, xl] because of the restriction on the first
derivative. But for xe [0, x,l], c(x) is governed by the following

integral equation:

*
c(x) = S G(x, X t) ¢2 czn tzdt (33)
o
where G{(x, xl.t) is
l - -1- , 0<t< x< x
x xl - - =71
G(x,xl,t) =

1 - 1 , x>t>x> 0
t xl l= =" -

G(x, X t) is a positive function such that the integrand of eq. 33 is
positive. This leads to the conclusion that c(x) = 0 for x¢ [O, x1]
which means that c(x) must be a non-negative function: 0< c(x) <L

Knowing that 0< ¢(x) <1, one can then bound M from above,

2

M< 2ngd max{l, max [&x)®Y
= 3 0< x< 1 ~ -
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such that, using eq. 24 (assuming 0< c(x) < 1, which can be checked

when a problem such as this is analyzed numerically),

fcl, (&M,
2
1-20d: [al,

where, as before, the denominator must be positive for the error bound

Ie-el, < (34)

to be valid.
For the second order chemical reaction investigated in Chapter A,

the error bound is given explicitly as (from eq. 34)

1
(755 MRI,
<
2 - l‘_.2 ( 1 )
N3 'N90

I&-cl

Using this expression, the error bound has been calculated for the results
obtained with the cosine series and the power series, and these values

are summarized in Table 1.

Table 1

Error Bound for the Approximate Solution to the Second Order
Chemical Reaction of Chapter A

Number of collocation Mean-square error Mean-square error
points (using ordinary bound for cosine bound for power
collocation) series series solution
2 1.544 x 1072 3.542 x107%
-2 -7
4 5.455x 10 4.514 x 10
-1 -8
6 1.189 x 10 7.930 x 10
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The error bound reaffirms our previous contentions that the cosine
series solution was diverging and that the power series solution was
acceptable. The pointwise error is bounded by the following inequality

(see eq. 31):
- 2 -
"c'c"ws KZ (ﬂg "C-C"z+ "an)

where K2 = Vlf;' . The pointwise error bounds for the same second order

chemical reaction of Chapter A are tabulated in Table 2.

Table 2

Error Bound for the Approximate Solution to the Second Order Chemical
Reaction of Chapter A

Number of collocation Pointwise error Pointwise error
points (using ordinary bound for cosine bound for power
collocation) series series
2 . 0846 . 001940
3 . 2240 . 000068
4 . 2988 . 000002
6 .6513 . 000000

Table 2 indicates that the power series solution is extremely accurate
throughout the entire interval [0, 1].

Tor this simple example wc; have used different properties (some
merely being numerical) of the appropriate Green's function. We have
summarized these various parameters in Table 3 (for planar, cylindrical,

and spherical geometries) for the following Green's functions:
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d a-1 dG
-3 x a‘;)-f(x—t)
dG 2 . dG )
‘-i-;(o) = 0 ; ) & (V) + G =
Table 3

Various Numerical Values Associated with the Green's Functions Defined
by the One-Dimensional Laplacian Operator with a Radiation Type
Boundary Condition

Geometry Planar Cylindrical Spherical
1+%‘--x,t_<_x Si 1n(x).t<x §%+’l‘-l,tix
e, =t t2x  =-ln(t), t>x 4oLt x
ol = #&lEd Ry wraher
Ky = e’ e 3 T3’

With the same boundary conditions as given in eq. 32, we might
have a Langmuir-Hinshelwood type rate expression instead of a power-law

rate expression:

1 d 2 dc c
2 ax X s 1+alc| (35)

with Xx> 0. We assume the existence of a continuous solution to this
problem. By utilizing the necessary conditions (for a function of one vari-

able) for the existence of an extremum, it is a straightforward exercise
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to show that 0< ¢(x) < 1. Then from eq. 25,

2 2
e o 1 0 ¢ s Valax < -
0<t<l o (l+ac+t(T-c)])" - -

such that one has the following mean-squre error bound for an approxi-

mate solution to eqs. 32 and 35:

I e-cll, ¢ —30 [,

1
L- 3 (090?
and is valid for

¢ < 4.05

This result is identical with that for a first order isothermal rate expres-
sion.

As a further example, consider a nonisothermal, first order
chemical reaction occurring in a spherical catalyst particle. When the
boundary conditions specify the temperature and concentration on the
surface of the catalyst particle, the problem can be reduced to the study
of a single nonlinear ordinary differential equation. We then have the
following dimensionless heat balance (we could instead study the dimen-
sionless mass balance):

;15;;-’; o2 &) = gm) (36)

wher £T) = 6% [T - (1 + B)] exp(- y(1/[T] - 1)) (37)



110

with the boundary conditions as
dT
I (0) = 0 ; T(l)=1 (38)

We assume the existence of a continuous solution to the problem
described by eqs. 36-38. By utilizing the necessary conditions for a
function to possess an extremum (a function of one variable), one can
show that 1< T(x)<1 + B. It might be helpful to go througia this briefly.
First, because of the boundary condition at x= 0 (eq. 38), there are no
special problems associated with the differential operator of eq. 36 at

x = 0. By |'Hospital's rule, the Laplacian operator of eq. 36 simply

2

reduces to 3 Q—ZI at x = 0. For simplicity then, we will only discuss

dx
eq. 36 as written. Now, assume that T(x) is less than 1.0 for some
X, in the interval [0,1). Because of the boundary condition at x = 1,
our assumption implies that the function T has an interior minimum at
some Xy At the minimum, the first derivative of T vanishes and the
second derivative is positive. These are the necessary conditions for
a function to possess an extremum. This assumption then implies that,
at x,, the left-hand side of eq. 36 is positive while the right-hand side
must be negative. This is clearly a contradiction which invalidates our
assumption. Thus T(x) is greater than 1. Now assume that T(x) is
greater than 1 + B . This implies that T(x) has an interior maximum.

At a maximum, the first derivative of T vanishes and the second deriva-~

tive .s negative. Consequently, the left-hand side of eq. 36 is negative
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while the right-hand side must be positive. This is again a contradiction
and invalidates our second assumption. This proves our original asser-
tioni 1 < T(x)<1+ B. This type of proof does require that we consider
T(x) to be a continuous function. Nowhere do we use that _(_:_(_:Q must be

within certain limits by physical reasoning.

Wiin these rather crude bounds for the exact solution, T(x), one is
able to utilize the mean-square error bound given by eqs. 24 and 25. For

the purpose of discussion, we have considered the following set of

parameters:
4,2 = 0. 25 (39)
) = 0.0.3 (40)
Y = 18. (41)

We can then calculate the necessary value for M.

|
A AR - N TR LI
oet<l Y 8T 'T=THuT-m)°

from which it follows that

= of -2(1 f
M< V-g—-max{l-é—,i, (1+-$1Y—a%+ig—)) ’.’g_"r (+8)[ l-g-fi (1+ B +€)[}, (42)

where ¢ is such that T(x) - ¢ <1+ B for all x. The upper bound for

- - 1 -
M st b h that M < = . i
mu e suc a upper -n-a-“—-z- m However M derived

from <q. 42 is too large (M < 14.582). If we can sharpen the upper

bound for the exact solution, T(x), we can accomplish two important
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things: (1) the mean-square error bound will be smaller and (2) the
mean-square error bound will be valid for a wider range of parameter
values. In passing, eq. 24 is also a sufficient condition for the unique-
ness of the solution to eqs. 36-38; consequently, a sharper upper bound
for T(x) would allow the a priori determination of a wider range of
parameters leading to a unique solution of this problem. Let us proceed
to show how, in some cases, the a priori upper bound for T(x) can then
be sharpened. We start with the crude bounds and the equivalent integral
equation (to eqs. 36-38),

1l
T(x) = 1 S Glx,t) $2[T(E) - (14 B)] exp(-y(1/[T| - 1)) t2at

(o]

where G(x,t) is a positive function (which can be obtained from Table 3),
and [T - (1 + B)] is a negative function. Thus we have the following

inequalities:

-v( -1)
T(x)< 1 - ¢2 min {[T- (1+ﬁ)]e —[—[ } S G(x,t) t dt
1<T<1+ B

or

-v{rm=1-1)
T<1-4% min  (T-(+p)e 1] Mg (-x%)] (43)
I<T<14+B : :

Eq. 43 is used to construct an iterative process which does, in some

cases, converge to an improved upper bound for T(x). Define 'I‘1 by

eq. 44
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T(x) < T1

L
1,,2 2 -¥l [u] -1
T, = 1L+ max +{o B, -¢ [u-(1+p)]e [ } (44)
. 6 N4y (14)
2

.u= = b

(Eq. 44 follows from eq. 43) T, may or may not be less than 1 + B. If

1

Tl <1+ B, we proceed iteratively, as defined by eq. 45, until the suc-

cessive changes are sufficiently small.
T(x)f_Ti (i=1,2,...)

"I.‘i =14+ -é-max {¢2ﬁ. - f(Ti_l)}‘ (45)

Following-up on our example (eq. 39), we find that the improved upper
bound on the exact solution is approximately 1.01564. This is consider-
ably different than the previous value of 1.3. If T(x) is bounded by a
value that is less than the arguments of %%, in eq. 40, M is then
bounded by eq. 46.

of

a7 |

Me 5 15 ) (46)

upper bound

Eq. 46 with the improved upper bound for T(x) leads to the following
mean-square error bound for the approximate solution to eqs. 36-38

(M< 1.536):

IT - Tl,< 013 IR(TH, (47)
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The improved upper bound for the temperature function, has not, to the
author's knowledge, been discussed before. Notice that in using this
approach we have validated the error bound and proved uniqueness.

A numerical study is presented for the problem (eqs. 36-38)

characterized by the following parameters:

(bz = 0.25
3] = 0.3
Y = 20.

The solution is approximated by the following expansion,

n
T(x)= 14 (1-x2) Z a, P, (x%) . (48)
i=1
We considered two different sets of polynomials, defined by eq. 49 and eq.

50.

1
S‘ (1- _xz) Pi(xz) Pj(xz) (xzdx) = 61j (49)
(o]

!
5' P, (x%) Pj(xz) (x2dx) = 6.5 (50)
o]

Although we have denoted both sets of polynomials by Pi' the two are
quite distinct. The method of orthogonal collocation was used to obtain
T atthe n roots of the n-th order polynomial in (xz). For the poly-

nomials defined by eq. 49, the results of Table 4 were obtained.



For the polynomials defined by eq. 50, the results of Table 5 were

obtained.

The errors are much smaller than one might expect from viewing the

115

Table 4

I R(EHI,

3.4882 x 107>

1.7535 x 10~4

7.0583 x 1o’6

2.0147 x10‘1°

7.0953 x 10'14

Table 5

IR(T) 1,

2.8088 x 10”3

1.2694 x 1074

4.6037 x 10‘6

1.0355 x 10”17

3.1821 x 10”14

behavior of the expansion coefficients.

Mean-square Residual and Error Bound for
Nonisothermal Chemical Reaction

[['f‘-T[[2<

3.8498 x 1074

1.9353 x 10°°

7.7900 x 10™ '

2.2236 x 10'll

7.8308 x 10'15

Mean-square Residual and Error Bound for
Nonisothermal Chemical Reaction

I E-7ll,<

3.1000 x 10~4

1.4009 x 10°°

5.0809 x 10° '

1.1429::10'll

3.5120x10'15
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The mean-square error bound aids one in the choice of the
expansion functions and in the number of expansion functions used. The
polynomials defined by eq. 50 consistently give better results for the
values of n studied. The error bounds using the functions defined by
eq. 50 are from 20 to 55 per cent lower than the error bounds obtained
by using the polynomials defined by eq. 49. Similarly, one finds that the
errors are sufficiently small to justify the use of as few as three colloca-
tion points—~the mean-square error is less than 0. 0001 %.

In investigating the error bound for this problem, we need to

evaluate M (the Lipschitz constant):

£§T) = 7T - (1 + B)] exp (-y(1/[T[-1) )

1
- of
l(T,) - «T)] = '5 5v L= +e(T_ -1 )(To-T)) @t
o 1 2 1
of
€T )= €T ) | < { max == [}]T,-T |
2 1 I<TeT av 1727
— ~ = Tupper

then M< 1.548, such that from eq. 31, we obtain

IT - Tl < 3-13-— (Ls48 [T -T[,+ [[R],) (51)

Eq. 51 and the data of Table 4 and 5 provide the pointwise error bounds

presented in Table 6.
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Table 6

Pointwise Error Bound for Temperature in Nonisothermal Chemical
Reaction—Comparison of Jacobi and Legendre Polynomial Expansions

n Pointwise error bound Pointwise error bound
for Legendre polynomial for Jacobi polynomial
expansion (eq. 50) expansion (eq. 49)

1 1.899 x 10”3 2.358 x 10°°

2 8.581 x 10™° 1.185 x 10”4

3 3.112 x 10°° 4.771 x 1078

6 7.000 x 10" ! 1.362 x 10”10

8 2.151 x 10”4 4.796 x 10" 1%

The pointwise error bounds are roughly six times as large as the
mean-square error bounds for this problem. As with the mean-square
error bounds, the Legendre polynomials (eq. 50) provide pointwise error
bounds that are 20 to 50% smaller than those obtained using the Jacobi
polynomials (eq. 49). For tlis problem the pointwise error bounds
indicate that three expansion functions would be adequate for most calcu-
lations—less than 0.001% error. Notice that the one term expansion is
accurate to about 0.2%.

As our final application of error bounds, we chose to study numeri-
cally a pair of parallel, isothermal chemical reactions. The dimension-

less mass balances are,

dc
-l—.g_(z )—a
dexxdx =%

3
B -az(l-3(cB+cC)) (52)



- a4(1-3(cB+cc))3

1a ,.2°55C, _
S oa )T % ¢
X
with
dl = 0.1 : d3-
a2= 1.0 H a4=

and the following boundary conditions:

de

‘B c _

&= = 3 ©@-
dc

2 B

% I (1) + cB(l) = 0.10
dc

2 C _

5 o () +c (1) =010

dc

0.2

1'

(53)

(54)

(55)

(56)

(57)

These equations correspond to the following chemical reactions which are

3A

k1

%

K4 ~B

ke
AT

occurring in an isothermal, spherical catalyst particle and experiencing

diffusional resistance. Our error bounds (eq. 23) allow for different
Sherwood(Sh) numbers but we have assumed that the Sherwood number

is identical for the two products, c_ and c_..

balance implies that

€A

B

= l-3(cB+c

C

)

C

The over-all mass

(58)
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If we assume the solutions to eqs. 52-57 are positive, the over-all mass

balance implies that A < 1. This bound on c, can be sharpened by

formulating the equivalent integral equations (to eqs. 52-57):

]

eglx) = 0.10 + 5 G(x, t, Sh, al)a2(1-3(cB+cC))3 t2at (59)
(o]
]

ccl®) = 0.10 + S‘o Glx,t, Sh, @ )t (1 - 3eg+ cC))3 t2at (60)

where G(x,t, Sh, a.l), (i=1,3) is the Green's function defined by the

following problem:

d 2 dG 2
T dx (x dx) +aix G=8(x-t

ax (0) = 0
2 dG
Sh ax (1) + G(1) = 0
such that
r
sinh Nfai t '\Iai cosh N[ai(l-x)-(l--szll)sinh \lai(l- x)
[ - 1, t<x
'\fai xt '\/ai cosh '\fai - (1 - -S-ZE)sinh '\/ai v
G, t,Sh, @) =
. Sh, .
smh'JOtix'\/aicosh\/ai(l-t)-(l-—2—)smh’\/ai(l-t)
T
Ny xt v — Sh .. . . liex
o No, costNa, - (1 -7~ )sinh Na,
1 ) 1 ) 1

.
(1 =1, 3)1 (61)
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By inspection, one can see that G(x,t, Sh, ai) is a positive function for
Sherwood numbers greater than 2 (these are the only ones we are

interested in anyway). The result of this diversion is that, for positive

solution with Sh greater than 2, the <R and Cc are bounded below

by 0.10; consequently, c because of eq. 58, is bounded above by

A’
0.40. We make use of this result in obtaining the Lipschitz constants
for the rate expressions (right-hand sides of eqs. 52 and 53).

Notice that we still require the assumption that the unknown solu-

tions are positive. Let us consider the Lipschitz constants for this

problem. The functions of interest are

c, -a_|(- 3(cB-l-cC))3

flegieg) = oyeg - @,

_ 3
fz(cB,cC) = a3cc - 04 (1 - 3(cB + cC)) '

the over-all rate espressions for the products. We are interested in the
following identity,
laf_

- = | —d- -
fj(VZ’ up) fj(vl' uy) S;av ’v: vitHv,-v,) (vp-vy)dt

S‘laf,
* ou [u=u +t(u,-u,) (uZ-ul) ¢ (j=1,2)
o 1 2 1

such that if we can bound the various partial derivatives of fj (j=1, 2)
we will have obtained valid Lipschitz constants for an inequality such

as eq. 19. In bounding the partial derivatives of fj we have utilized
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the assumption of positive solutions and the resultant fact that A is then

less than or equal to 0. 40.

2
MlB = al +9 az(l - 3(cB + cc)) < 1.54
2
MlC =9 az(l - 3(cB + cc)) < 1l.44
2
MZB = 9 al(l - 3(cB + cc)) < 1.728
_ 2 < 1.928
MZC = a3 +9 al (1 - 3(cB+cC))

(the numerical bounds are for the parameters of eq. 54)

If one checks to see what values of the Sherwood number will guarantee
that the denominator of eq. 22 is positive (such that the error bound is
valid), one finds that the Sherwood number is required to be greater than
3.01. Let us now consider several specific choices for the Sherwood
number.

Eqs. 52-57 were replaced by a finite system of 2(n + 1) algebraic
equations generated by the method of orthogonal collocation. The approxi-

mate solutions, EB and EC' satisfied the boundary conditions exactly.
Two values of Sh were studied: case lI) Sh — 0;3 and case II) Sh = 7.0.
Some of the numerical results are tabulated in Tables 7-16. All of the
integrations for the mean-squared integrals were done using Simpson's
rule with 101 points (accurate to more digits than shown—checked
against 201 points).

In both cases a comparison is made using the roots of the Jacobi

polynomials (eq. 49) and the roots of the Legendre polynomials (eq. 50)
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Table 7

leg-cpll,.

5.737 x 10”2

3,991 x 10°°

2.235 x 10°°

2.125 x 10~ 10

3.4o4x10'13

Table 8

als (Case I)

leg-ccl, <

7.050 x 10~%

4.890 x 107°

2.723 x 10°°

2.577 x 1o'10

4,125 x 10”13

Mean-squared Residual for Parallel, Chemical Reactions—~Using

Jacobi Polynomials (Case I)

Irg0,

3.526 x 10°3

2.455 x 10”4

1.377 x 10~°

1,311 x10'9

2.102 x 10" 12

Iz,

4.335 x 10”3

3.005 x 10~%

1.672 x 10"°

1.580 xlo'9

2.528 x 10’12
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Table 9

Computation Times for Parallel, Chemical Reactions (Case I)

n Solution time Error bound time
(seconds) (seconds)
1 0.018 0.371
2 0.071 0.437
3 0.194 0.509
6 1. 006 0.772
8 2.243 0.974
Table 10

Mean-squared Error Bound for Parallel, Chemical Reactions—Using
Legendre Polynomials (Case I)

- < ¢ - <
n leg-cgll,2 leg-ccll, <
1 5.058 x 10”4 6.220 x 10”2
-5 -5
2 2.915 x 10 3.574 x 10
3 1.431 x 10~ 1.745 x 1o'6
6 1.054 x 10”10 1.278 x 10~ 10
8 1.501 x 10”13 1.818 x 10”13
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Table 11

Mea.n-sqixared Residual for Parallel, Chemical Reactions—Using

Mean-square Error Bounds for Parallel, Chemical Reactions—Using
Jacobi Polynomials (Case II)

o]

Legendre Polynomials (Case I)

Ir, 10,

3.108 x 107

1.793 x 10~ 2

8.819 x 10°°

6.505 x 10”1°

9.266 x 10”13

Table 12

Ieg-cpll, <

1.226 x 1073

7.469 x 10°°

3.712 x 10“6

2.502 x 10”10

3.191 x 10'13

Ir. 0,

3.825 x 10°°

2.196 x 1074

1.071 x 10°°

7.838 x 1o'1°

1.115x10’12

[ec-ccll, <

1.506 x 10>

9.169 x 10™°

4.540 x 10'6

3.050 x 10™ 0

3.887 x 1o'13
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Table 13

Ir 1,

2.666 x 107>

1.626 x 10”2

8.106 x 10°°

5.482 x 10”10

6.994 x 1013

Talbe 14

legcgl, <

1.061 x 10°°3

5.451 x 10°°

2.381 x 1o'6

1.244x10'1°

1.410:«10‘13

Mean-squarcd Residual for Parallel, Chemical Reactions—Using
Jacobi Polynomials (Case II)

RN,

3.277 x 10" >

1.995 x 10~4

9.855 x 10‘6

6.607 x 10”10

8.415x10'13

Mean-squared Error Bound for Parallel, Chemical Reactions—Using
Legendre Polynomials (Case II)

leg-ccll, <

1.304 x 10°°3

6.693 x 10“5

2.912 x 1076

1.517x10'10

1.718x10'13
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Table 15

"RBHZ

2.307 x 1073

1.186 x 10”4

5.197 x 10°°

2.726 x 10° 30

3,091 x 10° 13

Mean-squared Residual for Parallel, Chemical Reactions—-Using
Legendre Polynomials (Case II)

Ir

2.840 x 10'3

1.456 x 1074

6.322 x 10'6

3.286 x 1o'1°

3,719 x 10”13
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(in spherical geometry). With Sh — o, the integrated mean-square
error bound (Tables 7 and 10) is 12 to 56 percent smaller using the
Legendre roots (as n increases from 1 to 8). This behavior is
mirrored in the integrated mean-squared residual (Tables 8 and 11).
The error bound requires 43% of the computation time for n= 6 and
30% of the time for n = 8 (Table 9). It is noteworthy that the integrated

mean-square error bound decreases roughly as 0(10-(n+ 2)

).

For Sh = 7.0, the integrated mean-square error bound (Tables
12 and 14) is 13 to 56% smaller using the Legendre roots (eq. 50), with
the difference most pronounced with n equal to 8(56%). The residual
is consistently smaller than for Sh — ©, but the error bound is not:
this observation is related to the coefficients which occur in the bound.

The coefficients for a power series expansion of the approximate
solution of cg for n from 1 to 8 (Sh —~® ) are given in Table 16.
This shows that for this problem the convergence of the solution is
indicated in the convergence of the coefficients. The convergence of
the coefficients is even more pronounced when the solution is represented
in a sum of the corresponding orthogonal polynomials rather than in a
power series.

Similarly, we investigated the pointwise error bounds for this

problem. Using the bound given by eq. 31 seems to give results which

are superior to eqs. 29 and 30. As an example, the bound for cg is
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lig-eglos 8, 1) My e, + IRG,)
' j=B,C
It is worth note that for the polynomials defined by eq. 49, the
max [R,(x)[ for the two components occurred always at x= 1.0
o<x<1l J
and for the polynomials defined by eq. 50 at x = 0. This corresponds
to the point where the weight function in the respective definitions (eqgs.
49 and 50) is zero.

For case I), we have the following explicit expressions for the

pointwise error bounds:
~ 1 ~ ~
“CB-CB "w S_ 73 l.l' 54 "cB-cB"2+ 1.44 "cc'cc " 2+ "RB “ 2]

leg-ecllos g [ 1-728 [Eg-cpll,+1.928 [G-c 1+ IR )

The numerical results, Table 17, show that the error is dominated by the
value of the mean-square residual rather than the individual mean-square
error bounds for EB and EC' Again, the Legendre polynomials (eq. 50)
provide a better error bound. This is, of course, related to the smallness
of the integral of the mean-squared residual. One need only use three

expansion functions to obtain an accuracy (pointwise) of 0.01%. This is

usually an acceptable accuracy for engineering calculations of this kind.
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Table 17

Pointwise Error Bounds for Parallel Chemical Reactions (Case I)

Legendre polynomials Jacobi polynomials
n flig-epll s Meg-coll < lEg-cplless  MEg-ccll, <
1 2.761x107°  3.405x10"> 3.132x 107> 3.860 x 10°°
2 1.592x10°%  1.957 x107% 2.179x10°% 2,677 x107%
3 7.815x10°%  9.554 x107° 1.220 x 10™°  1.491 x 10™°
6 5.756x10° 0 6.999 x1071° 1.160 x 10”7 1.411 x10"°
8 8.196x10"'3 9.956 x107!3 1.859 x 10712 2,258 x 10”12

4. Summary—Error Bounds for Ordinary Differential Equations

We have derived mean-square and pointwise error bounds for

approximate solutions of the following type of equation:

dy
1 d a-1 j _ .
a1 dx (x —de)-fj(y,...,yn) = 0 (j=1,...,n)

with boundary conditions such as

dy,
_.L(o) = 0
dx
dy,
2
33-5;3-(1)+yj<1)= g (G=1,...,n)

The error bounds were derived using the equivalent integral formulation
of the above problem. Other boundary conditions could be studied—the

important thing is that the boundary conditions be linear and that there
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exist the appropriate Green's function for the differential operator. The
nonlinear function, fj' is required to satisfy a Lipschitz condition in

the yj's. The error between the approximate solution and the exact
solution is bounded under these circumstances by the root mean square
integral of the residual function. This type of error bound implies the
uniqueness of the solution to the original differential equation. For those
problems where such a bound does not exist, the root mean square integral
of the residual provide a convenient error estimate.

The use of a pointwise or mean square error bound is illustrated
by problems particular to chemical reaction analysis. In the applications,
the approximate solutions are obtained by the method of collocation. The
use of the mean square error bound is first discussed for several simple

chemical rate expressions (different f(y)):

2 n

f(c) ¢ c (n is a positive integer)

(62)
¢2c

1 + alcl

f(c)

In all of the numerical applications the approximate solution is required

to satisfy the boundary conditions exactly. The first numerical application
involves eq. 62 with n= 2 and cbz = 1. One type of expansion solution
(cosine series) experienced error bounds that increased as the number

of terms increased. A second type of expansion solution (power series)
experienced error bounds that decreased (numerically) roughly as

-({n+2)

o(1o0 ). The error bounds allow us to conclude that the cosine series
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solution diverges while the power series solution converges (numerically).
The second numerical application involved a nonisothermal, first order
chemical reaction. The error bounds were used to compare the Jacobi
and Legendre polynomials. Legendre polynomials provided approximate
solutions that had consistently smaller error bounds—by 20 to 50%—than
Jacobi polynomials. Both polynomials provided approximate solutions
with error bounds of roughly 0.05% for one term solutions and 0.0001%
for three term solutions. The final application involved a pair of parallel,
reversible chemical reactions. The error bounds for the approximate
solution obtained using the Legendre polynomials were consistently
smaller than those for the Jacobi polynomials. Both polynomials pro-
vided approximate solutions with error bounds of roughly 1.0% for one
term solutions and 0.005% for three term solutions.

All of the derived error bounds are easy to apply and allow the
comparison of different approximate solutions. In comparing different
approximate solutions, we have considered different methods of solution,
different expansion functions, and different numbers of expansion func-
tions. For the problems studied, three term solutions consistently

yielded error bounds of about 0.005%.

5. New Error Bounds for Coupled, Semi-linear Parabolic Partial
Differential Equations

Another type of problem common to chemical reaction engineering
is the following system of semi-linear parabolic partial differential

equations:
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ou,

2
-—J— . - AR -=1.,.’ 3
aj st tY Vv uj v uj + fj (l:!.1 un) (j= 1, n) (63)

where aj >0 and v is a given vector function of the spatial coordinates,
X. Eq. 63 includes the effects of accumulation, convective transport,
diffusion, and any coupling terms in u(x, t) = (ul (%2 t)s ..., un(gc_. t)). Such
a system of equations would describe the transient response of the
reactant concentrations upon start-up for an isothermal, tubular reactor.
If eq. 63 is made nondimensional and the length standard, X is chosen
appropriately, one obtains an identical equation ( to eq. 63) but with one
significant difference: the maximum modulus of the vector function v
(nondimensionalized) is unity. This fact is required below.

We derive a mean square error bound for approximate solutions
of eq. 63 when the spatial domain is bounded and denoted by Q. The

result is stated as follows:

Theorem Let uj(f,t) and ﬁj(i, t) be functions defined in (@ x (0, T] )
with piecewise continuous first derivatives with respect to t. Assume
uj(_as.t) satisfies eq. 63 and that fj satisfies a Lipschitz condition in u.

Let Ej(_lf, t) = uj(_:_c_,t) - uJ(i, t). Assume tLJ(_:s.t) = uj(_:s, t) on the spatial

boundary: 32 . Then

T T
2 2 2 -
€. dxdt< 5, ) e (x,0)dx+ B, R, [u] ax dat
o R R By R A j = =
Q Q Q

n
by, )
YJ

i=1

T
[GiSeiZ(z.O)di+ﬁiS S‘Riz[g]dfdt] (i=1,...,n) (64)
Q ° Q '



2 ou,

i i

and  R.[8(xt)] = fi(al.....a )-[v (65)

Proof: Denote the differential operator by K, [G.l] :

Ki[ui;l = v ui-x~vui- Ct.l-é—, then

Ki[ui-uiJ = fi(g) - fi(g) + Ri ’ such that

1%,0e,] | s.};mij o1 + 12,].
J:

Introduce the following change of variables,

v, =€ exp(b(T-t)), where b is an arbitrary, non-negative

constant, then
Ki (e i] = {Kilvi] - oV b}‘ exp(-b(T-t))

Our method of proof follows that presented by Sigillito(30), but our goal
is different in two ways: (1) treating systems of equations and (2)
including the convective transport term (v-w u, ). We now introduce

the adjoint operator of Ki which is defined by the following integral:

T
g g {uk[v] - vK*[u] } dxat = 0
o Q .

In determining the adjoint operator, K*, one starts with the integral of

u * K[v] and, by integration by parts, proceeds to remove all
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differentiations from the function v. In doing so, one obtains a new
operator involving only differentiations of the function u. This new
operator is referred to as the adjoint operator. In obtaining K*, one
normally introduces various boundary integrals. The definition of the
operator requires that the boundary integrals vanish. This requirement
is met by utilizing the boundary and initial conditions associated with the
original problem and by setting boundary and initial conditions on the

adjoint function, u. The adjoint operator of Ki is,

KT11= 9°(1+ v D+ o 2]

and the associated boundary and initial conditions for Kx* are that the
function vanish on the spatial boundary and at the "initial time' T.
While the original problem has an initial condition at t = 0, the adjoint
problem has an initial condition at t = T. In obtaining the adjoint opera-
tor, one must pay particular attention to the boundary and initial condi-
tions that result.

We then introduce an auxiliary function, Oi, which is the solution

to the following problem:
*
o] - = i
Kil i] ai b9,1 v, in 2 x(0, T:!
with 6. = 0 on Y

and 6i (l‘.'T) = 0,

In general, v, is non-zero. For such a problem a solution exists if 9,1

can be bounded. We later show that Gi is bounded by an integral of Vi
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Since

2 .
V.= v, (K,l [9,1:-] -aib?i)

it follows that

T T .y 20
. % M i
S g dxdt = Sg 6, {Ki[vi] -a.bv, } dﬁdt-i-S. S V.o @
o o - o o2

S‘ a 9 (x,O)v (x, 0) dx
Q

but we have hypothesized that v, vanishes on the spatial boundary such

that the boundary integral vanishes:

T T
2 -
SO‘SS; v, dxdt = Sogz ei{Ki [Vi] - ai b v.l}. dxdt - Sg; aiei(ﬁ. 0) vi(i, 0)dx
(66)

As Sigillito(30) demonstrates, the assumption that v, vanish on the

spatial boundary can be removed entirely. Using the algebraic inequality,

1
lat+b | < (2a2+2b2)‘°‘

eq. 66 reduces to,

"v“z L= S Sv dxdt<[2(SS 6.[K[v.]-a bv]dxdt)

(S

+2al (5‘ 8, (x,0) v, (x 0) dx)’] (67)

Q
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Each integral on the right-hand side of eq. 67 is bounded via Schwartz's

integral inequality,

T T
Ilv.llz <[2S SG?dxdtg g[K,(v.)-a.bv,]zdxdt
i“2,1— o 0 i - o ‘0 i i i i -

T
' Py
citd § o woaxr L (02 axant

‘1 ‘e ¢ Yo Va
X T
i
[cl a? v? (x,0) dx + CZS S [Ki[ vi] -, b v_l]z dx dt]? (68)
Q o &

(for any c» positive) we chose the following values for S and c,:

a
c,=1 5 ¢, = -
1 %27 2 v A X))

where )\1 is the minimum eigenvalue for the following differential

equation:

In a manner similar to Sigillito(30), one can show that

T
S-az(xmdx+-2— (a b+x)S§ 2 2 1 2
Q - = o Ui 1 6, dxdt < — —x——s |v.||
i o Qi = - oz,l ()\Z-N)z i*2,1
1 (69)



2
where N = max v - v

It is helpful to outline the approach used to obtain eq. 69. Consider

the following simple identity:

) T et )
- 9.l dz:_: -a-T—--- d_:sdt
Q o .
£
=2 0, — dxdt
o o i ot
T
2 % 2 .
= — 8. [K'[06.] -v 8, -9 (v0,)]dxdt
ozi o V0 1 1 1 1 -1 -

such that by integration by parts for the second term of the right-hand

integral, one obtains eq. 70.

T T
2 2 2 *
8. dx + — v0.v0, dxdt = - — 0.[K[0.]+v'y0.] dxdt(70)
1 - a, 1 | S . 1 1 1 - )
Q i o Q i o R

Eq. 70 is the key equation for deriving the following inequality, eq. 71,

"V%Hz'l < —-r-l-——- ""1"2,1 (71)

2
KI-N

By adding a particular integral to the right and left-hands sides of eq. 70,

one obtains,
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S 0. dx + -?-[S‘S{ve.-ve.+a.bet"} dxdt]
Q - o o 1 1 1 17 -

] S‘ 0. [K*[0.] -2 b6 +v-ve] dxdt (72)
1 1 1 1 1 - 1 -

d 0 .
Sigillito shows that, for this type of problem, the following inequality is

valid for the auxiliary functions,

T T
2 1
0, dxdt< — v 6. vy 0, dxdt (73)
i - -\ i i -
1 o Q

o

where )\1 is the previously mentioned 'minimum eigenvalue." Using
eq. 71 to bound the root mean square integral of grad(ei) and eq. 73,
eq. 72 allows one to obtain eq. 69.

From the introductory remarks to this section we know that N is
less than or equal to unity. Eq. 71 requires that N is less than the
square root of the minimum eigenvalue of the equation prior to eq. 69.
For axial flow the minimum eigenvalue is 1r2 and this would clearly sat-
isfy the requirement.

For our choice of ¢, and c, we combine eqs. 68 and 69 to

1 2
obtain the inequality of eq. 74,

T
2 1 2 ( 2 % SS'
”"1"2.13 ”_'ai ('f]"l'N) {o ‘S;Vi ( °)d5+z(aib+xl) A Q[Ki[vi] -

1
2

-aib vi]2 dx dt} (74)
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The second integral on the right-hand side of eq. 74 is bounded via the

Lipschitz condition on the nonlinearity, fi'

T

2 2 b(T-t) ;2
ys‘[Ki[vi]-aibvi] d§dt52[21\/lsz HV5"2,1+ ﬂRie [[2, ] (75)

Q
° j=L j=l

Let us introduce the following definitions:

n
N, =Z M
1 l.J
j=1
2 1

j Vaj (NX N

a.
e
L B X (76)

Comoining eqs. 74-76, one obtains the following, eq. 77,

n

2 2 2 b(T-t) ;2 1%

lvill, < ki[‘?‘i S;z"i(i' 0) d’_‘“i(NiZ Iv,ll;, * [Re ﬂz’l)]a (77)
j=1

Squaring both sides of eq. 77 and summing over the index i, one is able

to solve for [Z nvj "5’ lIc

j=l
n n n
2 1 .
levillz S [ Z k.za,zyv?(f. 0) dx +Zk.zl."R,eD(T N2
L L i Yg i3t 2, L
3=t 1- ) K&y, N, I =l

j=1 ' (78)
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n

Eq. 78, where (1 -Z kf.!i Ni) must be positive, allows us to obtain the

i=1

final desired result:

2 2 2 z‘g 2 2 b(T-t) ;2
lelz, < Ivilly s ey ) vimoyax+ ke, R, e |

Q
2 n n
k., 2. N,
go—t b 1 [Z k,za,S v2 (x, 0) dx + Zk,zz,ﬂR_eb(T"’llz ]
a &g oivg e = it 2,1
iTid
j=1
where Vi(i‘-' 0) = € (x, 0) ebT . Then

I 13 1< 8.l @ 12 +8, 1R 12 +v, [}: 6 le 0] +§p I=,12,

j=1 j=1
s ZaiGZbT 3 5o 20T
" i («f_xl- N)2 ' i F (\/XI-N)Z(aibn:)—
n
2
A\ =

n n (79)
2
( M, ]

_z (»Jx -N)2 (ab+X ) Z Jm .

J-l m=]

The denominator of the expression for y; must be positive, and this is

how a value for the arbitrary parameter, b, is chosen. For those

problems where b must be greater than zero, the error bound is not
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uniform in time—it permits unbounded growth for large times. But there

are cases where b can be selected to be equal to zero. For example, if

M, =2, for all i,
1)
2
)‘1 =T
N =1

then, the denominator of the expression for Y, is positive for b =0 if
n< 5. If Mij = 3, n must be less than or equal to 2.

This bound, particularly when it i8 uniform in t, appears to offer
a more useful approach to bounding the error than an approach proposed
by Carasso(8). Carasso proposes that an asymptotic value of t be
obtained for the steady state solution; this in turn provides the informa-
tion necessary to transform the problem into a boundary value problem
in x and t.

One cannot help but notice the similarity between the mean square
error bound for the ordinary differential equations, eq. 22, and that for
the semi-linear parabolic partial differential equations. It would appear

that under the restrictions of the theorem that a Green's function exists

and is bounded (in norm) by

2
2
1 (A - N)E(n )

for cases where b can be set equal to zero.
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The error bound given in eq. 79 can be simplified for

2

-g—‘f- + !. 'v u = v u (80)
to -
lell; , < —2— [S' (0) dx + - S S R%[G]dx at]
' (’\l)\ N) Q l o Q

6. Application of Error Bound—Parabolic Equations

We discussed the following transient diffusion-reaction problem

in Chapter A:

N

T
4lg;r= l.2 gr(“ ) + 6% B ¢ exp (-y(1/]T] - 1))
by

208 _ 1 38 dc

4 8 2 or = 5 - 4% ¢ expl-y0/IT] - 1)
oT dc
ar (0,t) = " (0,t) = 0
T(Lt) = c(l,t) = 1.0
T(r,0) = 1.05
c(r,0) = 1.0
N 2

| = 705 $¢ = 0.25
N2 = 1225 B =0.6
¢ =0.65 y = 20.
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This type of problem has two characteristics which make it difficult to
solve numerically: (1) rather ill-behaved solutions when the reciprocal
of the dimensionless thermal diffusivity is much smaller than the
reciprocal of the dimensionless mass diffusivity (Nl < < NZ) and (2)
extremely large Lipschitz constants for the nonlinearity when one knows
only that

0 E C(r.t) -<_ 1.0

The first characteristic actually effects the numerical solution in a
rather severe manner leading to extremely small stable step sizes in
the time variable. The second characteristic more directly affects any
attempt at bounding the error of an approximate solution to the problem.
This particular problem experiences the second characteristic. When a
problem such as this is known to be a 'bad actor!' numerically, one often
takes particular measures to assess the accuracy of the approximate
solution. Let us then consider how the mean square error bound of eq.
79 might be used for this particular problem.

The Lipschitz constants for the dimensionless rate expression,

c exp (-y(1/[T] - 1))

are given by

|fe,n T )-f(e s T)) | < exply) [cz-cli'i-%exp(y-Z)sz- T, |
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such that for y = 20.,

exp (y) = 4.85 x 108

% exp(y-2) = 1.31 x 107
13
Consequently, b = 0(10 ~). As a result of the large value of b, the
13
residual function would have to be 0(10"10 ) to obtain a meaningful

error bound.
If an a priori upper bound can be specified for T(r,t), one finds

that the Lipschitz constants are given as,

lfc,n T,) - fle) s T <k leyme | +k,[T,-T |

where kl = exp(-Y(l/[m[ - 1))
and
k, = max [ YeXP?f-v(l/M-l))]
1 5. v i m v .
with T(r,t) < mit)

Such an upper bound has been obtained (see appendix). It is only useful
for t< 15 for this particular example (which approaches a steady state

solution for t roughly 100). For t< 10, one find that

T(r,t) < 1.0776

or k 4,2217

1

k 72.7113
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The Lipschitz constants for the nonlinearities in the partial differential

equations are then

MTT

n
©
e

W
—
(9]

)
©
w

~

(8]

MCT

"
-
=
g

such that b must be greater than 0.44 for the error bound, eq. 79,

to be valid. This is considerably smaller than previously. We have
chosen to use a value for b of 1. By obtaining an improved upper bound
of the exact solution T(r,t), we are able to demonstrate a useable mean-
square error bound for approximate solutions of this problem. Define

the following quantities:

_ (.65)(1225) _ (705)
@ = 2 R
)\1 = 1r2 ; b =1,0

such that (see eq. 79)

2bt!
a
5 = _2_.9_:___ = 40, 338 eZt' (¢! <10)
c N ' )
1
]
20,  2bt y
GT = X = 35.71l6 e
1
1]
5 o 2bt e

pc £= W) = 0. 00(.)9"69906
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2bt!

2 e 2t!
B == - 0.0010888 e
T xl(aTbnl)
3 %
cj
Yo F i = 0.57151e%"
-2
. bt"_3 z (Z M
j=¢, T k=¢, T
2
pr ), M
Yo = izc. T = 0.25529 2%
-2 g 2
1-e Z (Z M)
j=c, T k=¢, T
F(t') =[5 [&-c[2) +p8 [[R_[2 . ¢
c 2 c c'2,1
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1
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o -

(similarly for c ).

If a further improved upper bound were available for the function
T(r,t), the coefficients involved in this mean square error bound could
be improved. The futility of such a thought is displayed in Fig. 13 of
Chapter A. Our approximate solution to this problem indicates that the
exact solution does possess a maximum value of roughly 1.073 (near
r = 0 and between the dimensionless times of 10 and 25). The fact that
this error bound is only valid for times of 0(10) is a shortcoming. Even
so, it does allow one to compare various approximate solutions with
various expansion functions over this interval of time. This certainly
is some degree of success, but it is only fair to warn that the nature of
the solution to a problem of this complexity can and does change dras-

tically for different parameters and for longer lengths of time.

7. Conclusions

We have demonstrated a rather general method for deriving point-
wise and mean square error bounds for systems of nonlinear ordinary
differential equations. The error, using this method, is bounded by
various characteristics of the residual function. Particular attention is
directed to those results which bound the error by the root-mean-square
integral of the residual functions. In general, the method requires the

existence of an appropriate Green's function for part or all of the linear
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portion of the differential operator. We have investigated second-order
differential equations but this is not a restriction. The nonlinearity is
required to satisfy a Lipschitz condition in the dependent variables, but
this can be extended to include nonlinearities in the lower order deriva-
tives. The critical point centers on the Lipschitz constants—these often
depend explicitly on the upper and lower bounds of the exact solution.
Correspondingly, the inclusion of nonlinearities involving the lower order
derivatives would produce Lipschitz constants that depend on the upper
and lower bounds of the particular derivative.

A particular class of second-order nonlinear ordinary differential
equations was investigated. Different nonlinearities in the dependent vari-
able were studied. The approximate solutions to these problems were
obtained using the method of collocation and the method of orthogonal
collocation. For problems involving a single differential equation, the
mean square error bounds were roughly 0.0001% for a three-term
approximate solution while the pointwise error bound was roughly
0.01-0.001%. For a pair of nonlinear ordinary differential equations, the
corresponding mean square error were roughly 0. 001-0.005% while the
pointwise error bounds were roughly 0.01-0.02%. The error bounds are
easy to apply and allow one to compare various approximate solutions in
order to select the best one of those compared.

We have derived a mean-square error bound for systems of semi-
linear parabolic partial differential equations. The method of derivation

follows that introduced by Sigillito(30) but we have extended the results to
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'm;:lude the convective transport mechanism for systems of equations.
Interestingly, this result is similar to that obtained for systems of
ordinary differential equations. We found, by application, that the
Lipschitz constants play a similar role— they depended on the upper and
lower bounds on the exact solution. For parabolic equations the error
bound involves the integral of the residual function with respect to
distance and time. Although the error bound for the parabolic equations
is more difficult to apply, it does allow one to select among different

approximate solutions for that one which is most accurate.
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CHAPTER C

Analysis of the Removal of NOx From Automobile Exhaust

The method of orthogonal collocation is utilized in the analysis
of a contemporary air pollution problem—the removal of the nitric oxide
from automobile exhaust by an axial flow, packed-bed reactor. The
reactor is modelled by a series of four mixing cells; in each cell, one
must solve a pair of coupied nonlinear ordinary differential equations
with nonlinear integral boundary conditions. The physical problem is
unlike commercial reactors in that the inlet conditions vary with time
(as described by the Federal Test Procedure) over a rather wide range.
A model allows the delineation of the significant operating and design
variables;i_x;~this case, the heat load and the thermal inertia of the solid
packing. The variables studied include (1) different levels of the inlet
carbon monoxide and nitric oxide concentrations, (2) the solid-density
and heat capacity (related to the thermal inertié), and (3) the effective

diffusivity in the particle.

1. The Automobile Air Pollution Problem with NO_

Air pollution commonly refers to the presence of various chemi-
cals and substances in the air which are either proven or potential health
hazards. Many air pollutants also cause property damage and present
safety hazards. The major air pollutants are carbon monoxide (CO),
sulfur dioxide (SOZ). nitric oxide (NO), hydrocarbons (HC), and air-

bora particles. Of the major pollutants, it is estimated that the internal
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combustion engine contributes about 86 million tons/year of a total of
142 million tons/year (1). The primary automotive source is the ex-
haust gas. There are several recent reviews which summarize the
automobile air pollution problems, the suggested solutions, and the
current research (12, 28).
The exhaust composition varies with automobile, but Table 1

lists typical time average values for older vehicles (18):

Table 1

Exhaust Composition

component concentration

CO2 12 volume %

N2 74 volume %

HZO 10 volume %

co 3 volume %

I-I2 .5 volume %

02 .4 volume %
total hydrocarbons 5000 ppm by volume
total aldehydes 100 ppm by volume
NOx 1300 ppm by volume

Notice that the more objectionable components are present in fairly low

concentrations. The air pollution problem arises because of the large



156
number of automobiles in operation. NOx is symbolic for a mixture of
the nitrogen oxides. Kohayakawa (20) reports that NOx is composed of
roughly 95% nitric oxide and 3-4% nitrogen dioxide. There are lesser
amounts of other oxides. Newer automobiles emit lesser amounts of
CO (about 1 volume %) and hydrocarbons (about 200 ppm by volume)
than shown in Table 1. The improved control of these emissions has,
to date, been obtained by making relatively minor modifications of the
overall engine. Hydrocarbon emissions were greatly reduced when the
crank-case emissions were vented back into the intake manifold. The
carbon monoxide level has been controlled by operating the engine at
higher air-to-fuel (A/F) ratios (lean) and by changing the timing to
increase the peak combustion temperature. Unfortunately, both of
these modifications for CO-control increase the NOx emissions. This
is qualitatively shown in Fig. 1 for various A/F ratios. As the A/F
ratio is increased, the combustion mixture experiences quenching at
the cylinder wall (19). The quenching is hypothesized as the reason for
the maximum in the NO concentration as shown in Fig. 1.

The initial Federal legislation (13) specified the allowable CO
and HC emission levels and indicated allowable test procedures. The
procedure for measuring the exhaust emissions is referred to as the
Federal Test Procedure (FTP). Briefly, the procedure consists of
starting the engine cold and running the engine (on a test-stand, con-

nected to a dynamometer) through seven cycles of varying acceleration.
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high levels hi
E GO lg(l;f lﬁéels

CO . NO
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of CO

low A/F high A/F

Figure 1. Carbon monoxide and nitric oxide concentrations versus
A/F. (Qualitative).
The cold cycles (first four cycles) contribute more CO and less NO
than the hot cycles. Recently (14), the procedure for measuring the
exhaust emissions was changed. Here we use the older procedure
because of the availability of the requisite data as functions of time.
While the first controls, which went into effect in 1968, limited the
emissions of CO and HC in new automobiles, the proposed controls for
1975 will include NOx. For 1975 the proposed emission standard for
NOx is 225 ppm by volume, and this standard would be tightened to
100 ppm by 1980 (10). Interest in NOx control stems from the part

which NO may play in smog formation and the fact that NO is oxidized to



158
NOZ. Nitrogen dioxide is several times more toxic than CO.
A closer look at the level of the NOx emissions reveals that the

absolute values for these gases depend upon the manner in which the

automobdbile is driven (20):

Driving Mode NOx (ppm by volume)
idle 130
acceleration 1550
cruise 720
deceleration 220

It also known that the NOx emission are lower while the engine is
warming-up (24). This can be attributed to the rich fuel mixture that
an engine burns while warming-up. This behavior of the NOx concen-
trations varying with driving mode implies that any analysis has to be
a dynamic study.

The nitric oxide found in the exhaust is a result of the reactions

between nitrogen, oxygen, and water.

N_+0 = 2NO

2 2
N2 +2H20 - 2NO + ZH2

The equilibrium constants for these reactions are such that less than

1 ppm NO could be formed if the combustion temperature were less
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than 1200°F (16). Assuming that the internal combustion engine is not
replaced and that the combustion process (and associated temperatures)
remains the same as it is now, one realizes that any solution for con-
trolling the NOx emissions must treat the exhaust gases. As pointed
out before, minor engine modifications have not been successful in
reducing both CO and NOx.

One of the often-mentioned control devices for automotive
exhaust emissions is the catalytic convertor. The Stanford Research
Institute recently completed a state-of-the-art study regarding the use
of catalytic reactors for controlling the level of the NOx in the auto-
mobile exhaust (39). In this study it is concluded that 'for the removal
of oxides of nitrogen, the available experimental data are incomplete
and meager. A promising approach to catalytic control of oxides of
nitrogen appears to be its reaction with carbon monoxide in a two stage
cataiytic system, although such a system has not been tested to any
extent under road-test conditions.' Since this study was published,
much of the necessary experimental data has become available. It
is interesting to note that the two stage system referred to by the
Stanford Research Institute was first proposed by Roth and Doerr (25)
in 1961. In such a two stage catalytic system, the first convertor
reduces nitric oxide to nitrogen, carbon dioxide, and water (using a

stoichiometric excess of CO and Hz):
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NO + CO = IN, + CO

NO + H, = IN. + HO

The catalyst must be selected with care because some catalysts promote

the formation of ammonia (10),

NO + 2 H = H,0 + NH

2 2 3

The second converter then oxidizes the CO to CO2 using injected air,

CO + %oz = co2

Any ammonia formed in the first conveter is usually oxidized to NO in

the second convertor,

5 -— 3
NH3+ZOZ—-NO+2HZO

Such ammonia formation needs to be minimized. This problem has been
encountered by Bernstein et al. (10) and is still unresolved.

Although a considerable effort has been made to determine an
acceptable catalyst for the nitric oxide convertor, none is currently
available. Those that do catalyze the reactions fail to exhibit the neces-
sary mechanical and thermal resistance to deterioration—particularly
due to misfiring or sustained high speed driving. Another problem is
the poisoning and fouling of catalysts when exposed to the raw automobile

exhaust. This may eventually require the use of a low sulfur, lead-free
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gasoline. Let us consider some of the experimental work which has

been done in the search for an acceptable catalyst.

2. Catalytic Reduction of NO
A

As early as 1961 it was recognized that any nitric oxide in auto-
mobile exhaust could be reduced chemically be reacting it with carbon
monoxide or hydrogen (both of which are present in the exhaust). The

reactions of interest are

NO + CO = coZ + %Nz (1)
-— 1
NO + H2 - HZO + zN2 (2)
NO + 2 H. = H.O + NH (3)
2 2 T T 3

The last reaction (eq. 3) is undesirable and its occurrence should be
eliminated or at least minimized. For the temperatures of interest
(0-800°C) equilibrium thermodynamics predicts that the equilibrium
constants will all be in excess of 1010. The equilibrium constants for
eqs. ! and 2 are presented in the appendix. Although the equilibrium
constants favor the reduction of NO, one must still determine experi-
mentally the catalyst which has a favorable rate of reaction.

Baker and Doerr (25) demonstrated that various copper chromite
catalysts would catalyze the reaction between carbon monoxide and
nitric oxide (eq. 1). -They found that an excess of the reducing agent

(CO) increased the rate of reaction and that oxygen deleteriously
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competed with the nitric oxide for the reducing agent. Unfortunately,
the space velocities studied (5-10, 000hr-l) are considerably lower than
those that would occur in typical automobiles. The results cannot safely
be extrapolated to more typical conditions. Sourirajan and Blumenthal
(35) performed a parametric study of (1) the reductant/oxidant ratio,
(2) space velocity, and (3) gas temperature. They investigated the above
reactions (eqs. 1-3) and several others involving nitrogen dioxide (NOZ).
It was observed that the per cent conversion of NO increased as the
excess of reductant (CO, HZ) increased and decreased as the space velo-
city increased. They also achieved higher conversions for higher
temperatures. Both studies (25, 35) concluded that a high conversion
is possible at low temperatures (200-300°C), but this is not true at the
high space velocities (60, 000-100, OOOhr-l) that actually occur in prac-
tice.

Ayen and Peters (4) studied the reactions between NO and Hz
(eqs. 2 and 3) and reported an over-all rate expression for eq. 2. This
rate expression was used in the reactor analysis presented in the fol-
lowing subsections. A summary of the rate expression and its parameters
is given in the appendix. The catalyst was composed of copper, zinc,
and chromia and was chosen because it provided an appreciable quantity
of ammonia. Their data indicate that the ammonia reaction (eq. 3) was

1

only 1 to § as fast as eq. 2. Consequently, if the CO reaction (eq. 1)

is much faster than either of the hydrogen reactions, one can neglect

the formation of ammonia.
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Baker and Doerr (8) investigated the reaction between NO and
CO on a commercial copper chromite catalyst. They reported that the
per cent conversion of NO was about 90% for temperature above 270°C
and remained at 90% for space velocities as high as 36, OOOhr-l. They
noted the formation of large amounts of nitrous oxide (NZO) at tem-
peratures below 270°C. Tests were later performed (using this catalyst
and a new catalyst) on actual automobile exhaust (7). All catalysts were
tested for as long as 350 hours which would correspond to 12, 000 miles
of driving at 35mph. The temperatures (400-500°C) were higher than
before (8) and the space velocity (10, OOOhr-l) was lower. Hence, the
conversion of NO should proceed more easily. It is reported that as
the space velocity increases that the conversion decreased.

Ayen and Ng(3) investigated the reaction between NO and CO on
a barium promoted copper chromite catalyst. They found that the over-
all rate expression was well fitted by a Langmuir-Hinshelwood type
rate expression (over the temperature range 160-240°C). This rate
expression, which is reported in the appendix, has been used in the
analysis presented later. Ayen and Yonebayashii (5) investigated the
reaction between nitrogen dioxide and carbon monoxide under the same
circumstances (3) while Ayen and Amirnazmi studied the reaction
between nitrogen dioxide and hydrogen (2).

Ford Motor Company has been responsible for several recent

kinetic studies dealing with the problem of removing the nitric oxide
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from automobile exhaust. Shelef and Otto have studied the formation
of nitrous oxide as an intermediate in the reaction between NO and CO

(30). Shelefg_t al. investigated the interaction of CO, O,, and NO on

2
various transition metal oxide catalysts (32). An unusual study by
Shelef and Otto (31) involved solid carbon as he active site for the
three component interaction mentioned above. A survey of the removal
of NO by heterogeneous catalytic reactions (29) and of potential catalysts
for the decomposition of nitric oxide have also appeared (33). Supported
palladium and platinum catalysts have been used to study the interactions
between HZ’ 02, NO, and CO (19).

Some of the experimental results regarding the catalytic reac-
tions between NO and (CO, HZ) cannot be realized in practice. A
catalyst that works well with laboratory gases and a nitrogen atmos-
rhere need not work well in the corrosive atmosphere of the automobile
exhaust. Additionally, in practice the catalyst needs to have superior
mechanical strength, to be resistant to damage by excess heating, and

to be resistant to lead and sulfur poisoning.

Notwithstanding these shortcomings, our reactor analysis utilizes

the overall rate expressions previously mentioned (3,4). The authors
obtained their rate expressions (3, 4) by hypothesizing a reaction
mechanism and then testing the data. This is the justification for

expecting our results to be realistic.
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3. Preliminary convertor study

There are several features of the convertor for the removal of
NO from automobile exhaust that are discussed and analyzed for steady-
state operating conditions. We have considered the handling capacity,
the pressure-drop, and the physical dimensions of such a convertor
(assumed to be axial flow). Mass transport limitations within the cata-
lyst particle and heat transfer resistances at the catalyst surface are
discussed. By requiring a small pressure-drop, it is found that an
axial flow reactor with the desired capacity would have to have a very
small length-to-diameter ratio. This small ratio made it necessary to
determine the significance of dispersion in the bulk fluid (as distin-
guished from the particle fluid). The importance of the dispersion was
studied using various mathematical models.

The handling capacity of the convertor can be translated quite
easily into a minimum required volume of catalyst. Wei (38) states that
the exhaust volume ranges from 20 to 125 SCFM. Concentration data
(7,10, 21) indicate that the nitric oxide concentrations range from 200 to
3500 ppm by volume. These figures mean that the convertor must
handle as much as 16.6 gms NO/minute (assuming the validity of the
ideal gas law, a pressure of 1 atmosphere, and an average molecular
weight for the gas stream of 28). This same quantity of NO must be

transferred to the catalyst particles,
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16. 6 gms NO/min. = k?o O NO

uid gsurface) ST

N
Ps (gﬂ (5)

St

-6
v dp (1-¢)

where k?o, the mass transfer coefficient, is calculated from Thoenes

and Kramers correlation (36),

NO DNO'Nz % %
kg e m— (2.42 Re~ Sc~ + .129 Re’
P

854 +1.4RE2), (5)

S _ is the total external catalyst surface area, Ps is the gas density,

T
0) NO

..~ g ) is the mass fraction driving force. As discussed
uid surface

N
and (gfl
in the appendix, the Schmidt number, Sc, is about . 71. Viscosity values
are also presented in the appendix, as are diffusivity values. The mass

transfer coefficient is found to be 20-100 cm/sec. In all cases we used

the following values

d = .3175
P
e = .35

so that the convertor must have a total volume (voids included) of

NO

roughly 600 crn3 (T=800°K, kg o =, 0016). This cal-

=60 cm/sec, gguid

culation assumes the maximum driving force; if the surface concentration
is quite close to the bulk fluid concentration, a much larger reactor

could be required. We have assumed a reactor volume of .?.832cm3 (or

. lft,3) for further calculations. This value follows the suggestion of

Baker and Doerr (7).
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Fluid flowing through a packed-bed experiences a pressure-drop

which has been correlated by the following expression (Ergun equation):

2 .
_%szG(l-;) (6)

Ps dpe

where f, the friction factor, is given by

150
f=1.75+ Re (7)

with the Reynolds' number given as,

d G '
Re = _—P—ﬁ(l-e) (8)

The mass flux. G, can be related fo the volumetric. flux. F(SCFM). We
require that the pressure-drop not exceed 0.02-0.03 atmospheres. 1If
dp = ,3175cm (% inch) and ¢ = . 35 (as before). then the adverse case
introduced in discussing the convertor capacity indicates that the con-
vertor should have the following dimensions (assuming a cylindrical

convertor):

length = L = 1. 82 inches

radius = Rt= 5.5 inches

or L/D' = 0.165. Such a small L/D indicates that the operation of such
an apparatus can be significantly influenced by dispersion (viz., Chem.
~Eng. Sci.. 17 (1962) pp. 245-264). This point is discussed further

following a discussion of several transport mechanisms.
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Because the efficiency of the NO convertor is strongly dependent
upon any diffusional limitations which the chemical reactions experience,
it is important to decide whether such limitations occur. To this end,
a study involving the single reaction between NO and CO was done for a
single catalyst particle (the rate expression (3) is reported in the appen-

dix). The equations describing such a problem are,

e 1 d 2 dT =0 (9)

ks :2 dr (r E;) * -Aern) Ps (1 -Ep) erO'
g D, r'lé &% (=* g%NO) - Mo P (1 -ep) Irggl =0 (10)
ar() _ dg" o0 _,
dr dr
kg %}‘(r) = B (T (o) - Ty =1
- P D: %%No(r) = Pg kI;O (gNo(r) - ngﬁk). rery

The heat transfer coefficient, ht’ is calculated using a correlation ana-
logous to eq. 5 (with the Sherwood number replaced by the Nussalt
number, the Schmidt number replaced by the Prandtl number). The
particle diameter is 0.3175cm, the heat of reaction is (-89, 300) cal/gm-
mole reactant (see appendix), and the solid effective density, Pg (1-¢ p)’

is assumed to be 0. 975gm/cm3.
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This study included the bulk fluid conditions listed in Table 2.

Table 2

Typical Bulk Fluid Conditions

o NO
case Tbulk( C) Bbulk F(SCFM)
1 255 . 000965 16.9
2 360 .001390 25
3 490 . 002040 36.2
4 588 . 002790 50

Baker and Doerr report these values as typical exhaust gas conditions(7).
The effective thermal conductivity (27) and the mass diffusivity (26)

are in the following ranges of values,

keS = 10.3 to 10-4 cal/cm-sec-°C
D: =107} t0 1073 cm?/sec

the values used in the calculations were 0. 00090 cal/cm-sec-°C and

0. 06 cmz/sec respectively. Numerically, the pair of ordinary differ-
ential equations were solved using orthogonal collocation with one, two,
or three interior collocation points. The effectiveness factor, a
measure of the particle efficiency, was found to be between 0. 19 and
0.65 (for the bulk fluid conditions of Table 2). Notice that these low

values of the effectiveness factor occur for a relatively high value of
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the effective mass diffusicity. If the effective mass diffusicity were
lower, the effectiveness factor would be lower. The particle was found
to be approximately isothermal with respect to the surface temperature.
This was to be expected as the low reactant concentrations (ppm's)
provide little exothermic heat. The temperature difference between
the bulk fluid and the surface represented 80% of the total difference
between the bulk fluid temperature and the center temperature (see
appendix). Our dynamic model does retain the finite heat transfer
resistance at the surface. As demonstrated by Crider and Foss (15),
it is the particle Nussalt number (film resistance) that is responsible
for a large portion of the dispersion of heat throughout the reactor during
transient operation. This is found to be particularly noticeable when a
cold bed is contacted by a hot gas stream. For the above steady-state
calculations the total temperature differential (with respect to the
particle) was only 2-4°C. In the transient operation it was found to
be as much as 10-15°C. These results indicate that the differential
mass balance, eq. 10, must be included in our later models while the
heat balance can be simplified in ways to be discussed below.

Because of the extremely small L/D ratio required for the axial
flow convertor, an examination was made to determine the significance
of axial and radial dispersion. The importance of axial dispersion is
usually enhanced at low Reynolds' numbers and small (tube length)-to-

(particle diameter) ratios (here, L/dp= 15). Similarly, radial dispersion
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is usually enhanced at low Reynolds' numbers and small (tube radius)-
to-(particle diameter) ratios (here, Rt/dp = 88 is large). The Reynolds'
numbers of interest are between 30 and 90.

To examine these effects we considered the following three

models.
fluid transport NO-component balance
£lg-NO
= ! -
bulk flow G pL (1 - ) IrNol
bulk flow with axial dgNO e dZ NO
. . =% - g 1 -
dispersion G 3, pe D, > +py (1 - ) IrNol
dz
bulk flow with radial agNO e 1 8 agNO
. . —— - — commmam — ! -
dispersion G 22 P Dr 1 (rar ) + Py (1-¢ HrNOl

p's is the solid effective density. We have assumed that the chemical
reaction between NO and CO occurs homogeneously in the bulk fluid

This is tantamount to assuming that the effectiveness factor is unity and
that the -mass transfer resistance is negligible. When these equations
are non-dimensionalized (along with the respective heat balance), one
finds that the coefficients for the dispersion terms depend on the Peclet
numbers. We have studied these models using the data of Table 2 as the
inlét conditions to the convertor (with radial and axial Peclet numbers
of 10.0 and 2.0 unless specified otherwise). We have assumed a lin-
early decreasing wall temperature where the wall temperature at

z = 0.0 matches the inlet bulk fluid temperature and has a slope of
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of (-3.5°C/inch). This particular dependence of the wall temperature
was extracted from the data reported by Baker and Doerr (7). In the
'bulk flow' and 'bulk flow with axial dispersion' models, the differential
heat balance then includes a volumetric heat-loss term defined using an

overall heat transfer coefficient.

heat-loss per unit volume = T)

wall ~

An overall heat transfer coefficient includes the effects of the eiiective
thermal conductivity in the core of the convertor and the film coeffi-
cient at the wall. The film coefficient, ht’ is calculated from a
correlation (see appendix). The overall coefficient, hot’ is calculated

from the following approximation (see appendix):

See the appendix for values of k:, the effective radial thermal conducti-
vity, and how they may be estimated. The radial dispersion model has
a heat-flux boundary condition at the wall which involves the film
coefficient, ht'

These models are studied numerically for identical operating
conditions (see Table 2). For the nitric oxide concentrations of interest
(900-2600 ppm), the temperature profiles are of minimal interest. The
axial temperature differential was between 20°C and 45°C while radially

it was between 6°C and 18°C. These radial temperature variations
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cause less than a 3% difference in gNo between the wall and the center
of the tube. By considering figs. 2 and 3, one then concludes that
radial dispersion has an insignificant influence on the conversion of
nitric oxide. The radial temperature variations are just not large
enough to greatly influence the rate of reaction, and this is what couples
the temperature and concentration functions. Figs. 2 and 3 do exhibit
"mixing losses" (23) in the first 20% of the reactor, but even this effect
is small. Tentatively, it would appear that the axial dispersion has a
negligible influence. This is verified by the following additional calcu-
lations.

Additional calculations were performed with various axial mass
Peclet numbers and catalyst densities, p's (1 -¢). As the axialmass
Peclet number increases from 1.0 to 3.0, the exit conversion improves,

also see fig. 4,

Pel';1 gNO (z = 1.0)
1.0 . 000085
2.0 . 000059
3.0 . 000050

The inlet mass faction for this example is . 00434. Since the improved
conversion involves the last 1-2% of the total nitric oxide it is insig-
nificant. The point to recognize is that the resultant conversion is

little different than that obtained with the bulk flow model. By increasing

the catalyst density, we found that the volumetric rate of reaction
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increases—the rate of reaction is gm-moles NO/gm-catalyst-minute,

so this result is not surprising.

pL(1-¢) g0 (z = .619)
.75 . 00045
. 975 . 00026
1. 461 . 00008

All of the results indicate that neither radial or axial dispersion
is important. Because of this conclusion, the transient analysis was
done using the simpler one-dimensional mixing-cell model. Kuo et al.
(21) found that the mixing-cell model represented their experimental
data quite well for a carbon monoxide convertor similar to the one of

interest here.

4. The Transient Operation of the NO, Convertor

The nitric oxide convertor encounters inlet conditions which are
quite unusual. Industrial packed-bed reactors are designed to handle
a given inlet stream and to provide a specified product. The automotive
NOx convertor must be able to handle an inlet stream that varies in
temperature from ambient to 1500°F and in composition from 200 to
3500 ppm by volume NO. It must cope with start-up problems daily.
The volumetric flow rate varies from zero to 150 SCFM. Additionally,
these variations in temperature, composition, and volumetric flow rate

occur in no predetermined way. According to Bauerle and Nobe (9), the



178
variations in composition present one of the most significant problems
in the use of catalysts for pollution control.

To analyze such a NOx convertor, one must know how the exhaust
temperature, volumetric flow rate, and composition vary with time.
These data have been measured and reported (7,10, 21) for an operating
mode referred to as the Federal Test Procedure (FTP). Due to heat
losses throughout the exhaust system, the exhaust temperature actually
varies with position in the system—the gas temperatures near the ex-
haust manifold are considerably hotter than those near the muffler (37).
Vardi and Biller (37) studied the thermal response of a packed-bed
under the thermal loading conditions of the FTP. They did not include
the chemical reactions to be considered here. Their work, both
experimental and theoretical, indicates that the thermal inertia of the
packing may mean several minutes of heating before the catalyst
temperature reaches 500°F. If this is true, then the convertor should
be insulated such that the energy contained in the exhaust gases goes
directly into heating the catalyst particles. Let us now consider the
thermal response for a chemically reacting system.

We previously indicated that the transient analysis would utilize
a simple, one-dimensional mixing-cell model. (See appendix for
solution of u, + u_ = auxx) Kuo et al. (21) used this model to investigate
an automotive carbon monoxide convertor operating under the FTP.

Such a model is simply a series of continuous flow, well-stirred tank



179

reactors. In each mixing-cell (stirred tank), one must consider the

additional problem presented by the catalytic reactions,

NO + CO = CO, + 3N

2 2

NO+H, = H.O +1iN

Since all particles within a cell experience identical boundary conditions
(the bulk fluid temperature and mass fraction within the iﬁ cell), we
need only consider one catalyst particle for each cell in order to deter-
mine the total conversion for the cell. The overall rate expressions for
these two reactions are given in the appendix.

In the following, we investigate the heat and mass balances
necessary to describe the transient response of the ith mixing-cell. Let
us briefly consider the assumptions used to obtain these balances. We
consider a series of N equi-volume mixing cells. Each cell is assumed
to be adiabatic. Due to heat transfer to and from the solid packing
within each cell, the bulk stream temperature differs from one cell to
the next. As a simplifying assumption, all physical properties are
evaluated (for a given instant in time) for the temperature at the inlet
to the convertor. The heat capacity and the mass average molecular
weight of the bulk-stream-gas are nearly constant. We assume that
the fluid heat capacity is 0.270 cal/ (gm-mole °C) and that the average
molecular weight is 28 gms/gm-mole. The chemical reactions produce

a decrease in the total number of moles and this produces a very small
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change in the volumetric flow rate which has been neglected. For a
fixed time, the volumetric flow rate is assumed constant throughout
the convertor. We are now in a position to state the cell balances.

In writing the cell balances, we incorporate the assumptions
of several other authors. As explained by Brian et al. (11), the accu-
mulation of mass is neglected because of the small residence time of
the gas in the void space. Similarly, the thermal response of the void
space is so much faster than the solid catalyst that the accumulation of
enthalpy can be neglected in the void space (22). The enthalpy and mass

balances are then

= B . awm g, 6 i g _ 8
G m chi-l = Gm chi +d (1 e)vihot(Ti Ti) (11)
p
(heat in) = (heat out) (i=1,... N)
2
_ NO _ _ _ NO \ \
and G m gi-l = Gm g + ps(l -e)Vi mNO(Z NO. (|rj|)i) (12)
‘e J
j=t
(mass in) = (mass out) (i=1,...,N)
P
3 s NO CO 2 .
deily = 25 el a9 600, ) ar, i1 N
Jn R o J ¥ LP "LP
P

In the cell heat balance, eq. 11, the change in the heat content of the
fluid is matched by the heat transfer to the solid phase. In the cell mass
balance, eq. 12, the change in the NO concentration in the balk fluid is

matched by the changes due to the catalytic reactions in the particles.
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In the cell balances, eqs. 11 and 12, the first of the N equations
would involve inlet temperature, Tg , and the inlet mass fractions, gl(;IO’
ggo, and go2 . For the numerical investigations, the inlet temperature
and volumetric flow rate (related to the mass flux, G), figs. 5 and 6, are
from Kuo et al. (21) and the inlet mass fractions for NO and CO, figs.
7 and 8, from Berx;stein et al. (10), but are for a hot cycle. We use
this data for hot and cold cycles. When an engine is started cold, the
inlet carbon monoxide concentration is extremely high because of the
low A/F ratio and the NO is low (24). If our inlet data is averaged in
accordance with the FTP, we find that the CO concentration is 1. 5% by
volume and the NO concentration is 850 ppm by volume. In comparing
the temperature data of Kuo et al. (21) with that of Vardi and Biller (37),
it appears that Kuo et al. have considered a convertor located near the
muffler. The hydrogen concentration is difficult to measure under the

dynamic conditions of the FTP (21), but can as shown in the appendix

be approximated by the following simple relation:

2 C
g =gO/3.8

In the following, we investigate the heat and mass balances
necessary to describe the transient response of the catalyst particles
in the ith mixing-cell. By assuming that the bulk fluid in the ith cell
is well-mixed, we need only consider a single particle. The chemical

reactions occur within the particle (in a distributed fashion, similar
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to eq. 10). The particle effective diffusivity is assumed constant. The
heats of reaction are only mildly temperature dependent (refer to appen-

dix) and are taken to be the following constants:

AH - 89,300 cal/gm-mole NO

NO+CO

AHNO+Hz = - 80,500 cal/gm-mole NO

In obtaining the balance equations, we have considered the results of
our preliminary study and those of McGreavy and Thornton (22).

Earlier, we concluded that the catalyst particle was isothermal
with respect to the surface temperature under steady-state conditions.
For the transient analysis we have assumed that the particle is isothermal

with respect to the surface temperature which is a function of time.

a7 & Bot g ¢ hot s :

Ps Ssat - 3. & - T, -z(-AHJ.) (I a3
p P i=1
(accumulation) = (heat in) - (heat out)

The catalyst temperature is coupled to the bulk fluid temperature through
the heat transfer mechanism at the catalyst surface. The overall heat
transfer coefficient has been discussed previously. The mass balance

for the catalyst particle is similar to eq. 10, that is
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5NO 2
e 1 @8 ,2 gip z
- = + =
Ps Dy 2 or (=“ E2E) + myg ) e, Tl 70 (14)
j=1

with a similar equation for the concentration of carbon monoxide. We
have assumed tha the transient response to mass changes is much faster
than the response to thermal changes (22). The particle species balance
(eq. 14) is coupled to the cell balance (eq. 12) by a boundary condition

at the catalyst surface,

NO
0
e _gLip - NO , NO ., _NO
Pe Dy oy |r=Rp Pg kg (gi (t) gi,p(Rp’ t) (15)

Notice that the NO species balance for the mixing-cell, eq. 12, can be
used to replace the boundary condition given by eq. 15 by a nonlinear,
integral boundary condition. Assuming that gi\l_? , eq. 12, is known,
one sees that gli\IO (t) depends on a nonlinear integral involving g:\f(;(r, t)
and Tf (t). A little more detail of the overall model is presented in the
appendix.

Numerically, we have to solve egs. 11 through 15 for the cell
concentrations, the cell temperature, the solid temperature, and the
solid phase concentrations. We use orthogonal collocation to handle
eqs. 14 and 15 (and similar equations for the CO balances in the catalyst
phase). Let us consider the steps involved in advancing the solutions

fromttot+ At. We start at the inlet to the convertor where the inlet
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conditions are specified functions of time. Based on the old values
(at 't'), we predict a new value of T: (t + At) using the predictor of the
improved Euler method for eq. 13. * This predicted value allows the
calculation of a corresponding new value for T% (t + At) using eq. 11.
Eq. 12 is used to reduce eqs. 14 and 15 to a problem with a nonlinear
boundary condition. Orthogonal collocation reduces this problem then
to a system of (n+l) nonlinear algebraic equations where (n) is the num-
ber of interior collocation points. With the predicted Tf (t + At), one
can then solve for the mass fraction profile within the catalyst particle
of the ISt mixing-cell. At this point, one has the requisite numbers to

calculate the corrected value of Ti (t + At) ( of the improved Euler

scheme). Having finished with the first cell, one can proceed to the
second. This is repeated through the Nth cell. The old values are
always saved for the prediction of the new values as we march the
solution out in time—(t + j At). As prescribed by the FTP, we must
solve these equations for a total of 979 seconds (20 seconds of warm-up
followéd by 7 cycles of 137 seconds each. We have used a variable step
length. For 4 mixing-cells, the total computation time is about 21

minutes (using three interior collocation points). A computer

*It is necessary to include changes in G, hg, ps, and ngO produced
by the variation with time of the inlet volumetric flow rate, and the inlet
gas temperature. In calculating pg we have assumed the validity of the
ideal gas law. The transfer coefficients are calculated from correlations
due to Thoenes and Kramer (36) (assuming Pr=0.77 and Sc=0. 71).
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listing for this program is provided in the appendix.

We have indicated the model for the NO convertor and how it is
meant to be used. Let us know consider several specific applications.
These enable us to recognize the important variables and the significant
difficulties.

Table 3 is a list of values for the designated parameters which

have been used for all of the following applications.

Table 3

Fixed Parameter Values

3 3
dp = 0.32cm Vtotal = 2832 cm” (or 0.1 ft')
€ = 0.35 Ptotal = 1 atm
€ = 0.45 Sc = 0.71

P
P = 0.77 R = 13,97 cms
T t
s
m = 28 gms/gm-mole Ti(O) = 27°C
kz = 0.00090 cal/(cm-sec-°C) Tf(O) = 27°C
¢, = 0.27 cal/(gm-°C)

In addition to these fixed values (Table 3) there are three other para-
meters of interest: particle effective diffusivity, solid heat capacity,
and catalyst density. For these parameter we have investigated three
diffcrent choices, which correspond to different degrees of difficulty

in removing the nitric oxide and are summarized in Table 4.
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Table 4

Parameter Values Investigated

Case A Case B Case C
(more favorable) (standard) (less favorable)
DZ = 0.06 cmZ/sec 0.017 cmZ/sec 0.001 cm?%/sec
cg = 0.18 cal/(gm-"C) 0.26 cal/(gm-°C) 0.26 cal/(gm-°C)
, 3 3 3
Py = 1.5 gms/cm 2.9 gm/cm 2.9 gms/cm

Case A represents a convertor with a thermal inertia which is roughly
-13- that of Case B (the standard case). The solid catalyst of Case A should
heat up faster than Case B and produce better conversion for short times.
When the bed is sufficiently hot, Case B would produce better conversion
of NO because of the greater density. Case C (in which the diffusivity
approximates that of a micro-porous catalyst rather than a macro-
porous catalyst as for Cases A and B) should take as long as Case B
to heat up but have lower conversions because of the additional resistance
to interparticle mass transport—the diffusivity.

The initial investigation of the nitric oxide conversion involved
Case B. Using the inlet conditions from Figures 5-8, one finds the
transient responses in T; and g?o (for a model with 4 mixing-cells) as
given in figs. 9 and 10. This mass fraction represents the exit concen-
tration. The temperature response of the first cell is slightly faster

while the response of the third and fourth cells is rather slow. While
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Figure 9. Gas-solid temperatures versus operating time. (Case B
of Table 4, second mixing cell of four).
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the second cell requires roughly 270 seconds to heat up to 300°C, the
fourth cell requires roughly 1UC seconds. During the first cycle of the

FTP, the reaction between NO and H_ contributes nothing to the con-

2
version of NO while during the seventh and final cycle, this reaction
removes between 2 and 9% of the NO. Several conclusions can be drawn
from Case B. First, the bed heats up slowly; consequently, the initial
conversion is quite low whereas the hot cycle conversion is better. As
shown in fig. 10, this model is relatively insensitive to the number of
mixing-cells employed (4 cells versus 6 cells) in the model.

It is reasonable to investigate a more favorable set of parameters
(Case A) and a less favorable set (Case C). The amount of variability
chosen for cg’ p's, D: is typical of the difference between a supported
and an unsupported catalyst (26). For Case C, the conversion was found
to be about 30% lower than in Case B. Correspondingly, the lower con-
version of NO provides less exothermic heat of reaction, but this never
lowers the solid temperature by more than 0.6°C from the standard
case (Case B). If we compare the conversion for Case C with that for

Case B over the FTP, we find that Case C provides consistently lower

conversion (see Table 5) for all times.
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Table 5

Instantaneous Percentage Decrease in Conversion for Case C
As Compared to Case B

Instantaneous percentage time
decrease (seconds)

5.2% 60
11.4 120
42.1 182
33.3 242
25.0 480
21.4 602
28.2 867
21.2 888
20.5 922
13.0 947

For long times we find that the conversion is roughly 20% lower than for
Case B. These results are consistent with what is known about the
relation between catalyst efficiency and the interparticle diffusion coeffi-
cient (26). As the diffusivity decreases, the effectiveness f;actor
decreases such that the reactor conversion would decrease.

- Alternatively, Case A assumes a larger particle effective dif-
fusivity. While the diffusivity of Case A should present an improvement
in the NO conversion as compared with Case B, this would only be true
for identical solid temperatures. As mentioned previously, a trade-off
has been made in selecting Case A. The packed-bed heats up faster

for Case A since p's is smaller—the same amount of energy raises the
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temperature of the solid faster for a given length of time. On the other
hand, by decreasing p's, the rate of conversion of NO per unit reactor
volume for a fixed temperature is lowered. This trade-off is demon-
strated in Table 6 where we show the exit concentration as a function
of time for Case A and Case B. For times less than 4 minutes, Case
A does provide markedly improved conversion. Table 6 also shows
that Case A provides poorer conversion for times longer than 4 minutes.
The poorer conversion may be acceptable if the improvement for short
times is significant enough to enhance the time average exit conversion

over the entire FTP.

Table 6

Instantaneous Exit NO Concentrations for Case A
And Case B During the FTP

(seconds) giljxloet gfo (Case 4) g?o (Case B)

60 . 000672 . 000480 . 000615
120 . 001307 . 000553 . 000974
182 . 000690 . 000146 . 000178
242 . 001307 .000192 . 000321
480 . 000546 . 000066 . 000040
602 . 001466 . 000368 . 000262
867 . 000690 . 000257 . 000259
888 . 000546 . 000102 . 000079
922 . 001307 . 000214 . 000156

947 . 001307 . 000042 . 000022
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The different heating capabilities of the two cases are demonstrated in
Figs. 11 and 12. For the first mixing-cell (of four), Case A allows the
solid catalyst to heat up to 300°C in about 105 seconds while the standard
case requires about 140 seconds. Further, the first three mixing-cells
in Case A exceed 300°C in about 140 seconds while the standard case
requires about 310 seconds. These facts show that a best choice of p's
should minimize the thermal inertial while maximizing the conversion
of NO.

It is worth repeating that the interest in this convertor is on the
removal of nitric oxide. Any unconverted carbon monoxide would, in
practice, be converted in a second packed-bed reactor—along with any
HC in the exhaust. Due to the recorded differences in the level of NO
and CO in exhaust emissions (17) for different automobiles of the same
engine type, the following extremes have been investigated to show how

the level of control varies:

CO (volume %) NO (ppm by volume)
4.3 450
2880

The standard parameters of Case B are retained,

p'8 = 2.9 gms/cm3, g 0.26 cal/(gm-°C), and

0.017 crnz/sec

)
n
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Figure 11. Solid temperature versus operating time. (Cases
A and B of Table 4, first mixing cell of four).
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Figure 12. Solid temperature versus operating time. (Cases
A and B of Table 4, second mixing cell of four).
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and the inlet concentrations are obtained by scaling up or down those
previously used (CO of 1.5 volume % and NO of 850 ppm by volume).

The results for these various inlet concentrations, figs. 13
and 14, show clearly that this convertor is unable to successfully con-
trol the higher NOx emissions. Although the percent reduction of NO
is relatively constant for all three levels of exhaust emissions, the

absolute levels are markedly different,

Inlet NO Outlet NO (seventh cycle)
450 ppm 75-100 ppm
850 200-250

2880 750-850

Judging by the proposed 1975 standard for NOx emissions of 225 ppm
(over a weighted average of all seven cycles, not just the seventh cycle),
the untreated exhaust should have less than 1000 ppm NOx. This is an
obtainable goal but experience (17) shows that more rigid control of
individuals and their automobiles may be required.

Let us consider the recommendations which can be drawn from
the NO convertor analysis. A truly successful solution to the pollution
control problem requires good conversion of the nitric oxide beginning
with the first test cycle, not just in the seventh cycle. Because of this
the convertor should be placed closer to the exhaust manifold: higher
gas temperatures then heat the catalyst more quickly. The analysis

shows that a catalyst with a relatively large particle effective diffusivity
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should be used. Good conversion over the entire Federal Test Pro-
cedure requires a compromise between a small solid thermal-inertia
(p's cs) for quick heating and a high solid density (p's) for a high
volumetric rate-of-conversion. Additionally, the time average NO
concentration of the untreated exhaust gas should be limited to about
1000 ppm. and this seems to be technologically feasible. Conversion
of 80% of 1000 ppm NO would satisfy the proposed 1975 standard (225

ppm) while conversion of 80% of 3000 ppm would not.

5. Summary

After discussing the nature of nitric oxide as an air pollutant,
we analyzed a catalytic convertor for the reduction of automotive nitric
oxide emissions. A brief survey of previous attempts at identifying
an acceptable catalyst was presented. From this survey we conclude

that the chemical reactions of interest are

NO + CO= CO, +iN

2 2

and NO + H, = H,O + iN

Previous studies concluded that these reactions are successfully cata-
lyzed by various copper chromite catalysts. These same studies
reported the necessary overall rate expressions to carry-out a packed-

bed reactor analysis.
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We have limited the mathematical analysis to an axial flow
convertor. As part of a preliminary study we concluded that for the
operating conditions of interest (1) the effects of dispersion in the bulk
fluid could be neglected, (2) the chemical reactions experience trans-
port limitations within the catalyst, and (3) the conversion was sensitive
to the catalyst density. This information was used in selecting the
model for studying the transient response of such an axial flow conver-
tor. The transient operating conditions are specified by the Federal
Test Procedure. The mathematical model chosen consisted of a series
of four mixing-cells, each of which contained the separate problem of
diffusion limited reactions occurring catalytically. This model was
used to study the effects of (1) particle effective diffusivity, (2) catalyst
density and heat capacity, and (3) different levels of reactant concen-
trations. One of the most serious difficulties concerns the length of
time required to heat the bed of solid catalyst to a temperature sufficient
to produce an acceptable rate of reaction. It is found that a low density
catalyst with a low heat capacity heated to 300°C in less than half the
time required for a denser catalyst with a higher heat capacity. This
difference allows better conversions for shorter times but leads to
poorer conversions at longer times, indicating the necessity to make a
compromise. Better conversion is also obtained for higher particle
effective diffusivities. Eight percent conversion is obtained at three

significantly different levels of nitric oxide, but 80% conversion of

s
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concentrations in excess of 3000 ppm leaves too much residual nitric
oxide to meet proposed 1975 emission stz ‘ards for nitric oxide (225
ppm). Consequently, the untreated e «s8t gas should contain no more
than 1000 ppm nitric oxide, which is mically feasible. In the cases
studied, it appears that catalytic control of the nitric oxide emissions

from automobiles is an obtainable goal.
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1. Liu's Explicit Method for Differencing and Solving Parabolic Partial
Differential Equations

Explicit methods for differencing and solving quasilinear parabnlic
partial differential equations avoid the iterations inherent in the implicit
methods. Liu(l) develops an explicit finite difference scheme similar to
that of Saul'yev(2): the scheme has two finite difference equations for each
spatial grid point, mA x, in advancing the solution in time from nAt to

(n+1)At. One difference equation is solved (explicitly) from m =1 to

m = M while the second difference equation is solved from m =M to

m = 1. These difference equations can be used simultareously (the average
method) or sequentially (the alternating method: aiternating the use of one
equations for even time steps with the use of the second equation for odd
time steps). We refer to the difference equations which can be solved

explicitly from m =1 to m = M as part of the L-matiod. Similarly,

the second equation is part of the R-method (this is Liu's terminology).

L-method

ou 1
5t |l mn~ A (a(m.ntl) - u(m, n)
2 1
—9-2- _ == (ulm-1,n) - 4u(m, n) + 3u(m+1,n) -
9 x o 2(Aax)

(u(m-2, n+1) - 4u(m-1, n+1) + 3u(m, n+1)))
du

1
= A =g ) + - -1, + - v .
3 x Irm.m 1y (a(m-2,nt1) - 4u(m-1,n+1) + 3uim, ntl) +

(u(m+1, n) - u(m-1, n}})}
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R- method
odu _ 1 !
a—_lt mon - AE (u(m, n+1) - u(m, n))
82 1
_-E'Zlm W32 (-u{m+2,n+1) + 4u(m+1,n+1) - 3u(m, nt+1l) -
] ’ 2(A x)

(-u{(m+1,n) + 4u(m, n) - 3u(m-1, n)))

ou 1
a—;lm, n>1a% (-u(m+2, n+1) + 4u(m+1,n+1) - 3u(m, nt+1) +

(u(m+1, n) - u(m-1, n)))

We have presented the difference operators introduced by Liu(l).
Notice the indicated groupings of terms—Liu uses extensively the three
point forward and backward difference formulas. Liu's method (used as
presented) involves 'imaginary grid points''—for m = 1, the difference
operator for the second partial derivative in the L- method introduces
u(-1, n+1) which is one spatial step beyond the actual boundary at m = 0.
Liu suggests that use be made of another difference operator which allows
one to solve for u(-1,n+1) interms of u(l,n), u(0,n), and u(0,n+1). It
is necessary to consider the boundary points, such as those discussed,
with care.

Liu's method was developed for the following type of nonlinear

problem: 2
9 u, 0 u, 9 ui
ox
where u = (ul. cees un) and (i=1,...,n). Liu's method is numerically

stable for all step sizes for the simple linear diffusion equation: u =u__.
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The use of Liu's method for the problems of Chapter A involves

two variations which we describe here. First, our boundary conditions

are,

9T

= (0,8) = 0 (1)
and

2 8T

N 5 (1rt) = g(t) - T(L,t) (2)

The following difference approximations were used for the boundary

conditions:
n+1 n+ 1
BT 0y L0 _g ‘)
ax ' T Ax -
and
n+ 1 n+1l
2_2T () - 2 Y 'TM-1]_ n+l 0+l (4)
Nu 8x """ " Nu AX =8 M

(similarly for c(x,t)). Secondly, the image points should depend on the

nonlinearity. Consider eq. 46 (of Chapter A) evaluated at x = 0:

N 2
13T 0T 2
———(0,t) =3 —5—(0,t) + ¢ B c(0,t) exp(-y(l/lT(O,t)l -1)).
40t 2
I x
. . . . 2T
Using a forward difference approximation for aT(O, t) IO 01 and
2 1
Saul'yev's difference scheme for —TI (see (1)), one obtains the
axz 0, n+l
following (using eq. 3):
ntl Nl/4 n+l 1 Nl/4 n
O =Ty - 5 Flin) - 5= T
3(Ax)

where B = At

and F(1l,n) is the rate expression evaluated for c?
(Aax)

2
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and T'll. T'T:l is the image point for the L-method. For the R-method,

consider the evaluation of eq. 46 (of Chapter A) at x = (M-1)Ax. When

the equation is then approximated using a forward difference for 2T and

o 2 ot
5x and Liu's suggested difference scheme for > (all of these are
ox
evaluated at (M-1) Ax),
azT 1 n+l ntl n n
ZIM-I,n+l= 5 Tager - T - Tt T b
ox (Ax)
one obtains
n+l n ntl _n+l
-T -
i\]_l [TM-I M-l] - 1 [Tnﬂ _Tn+1_Tn +T" L, 2 [TM TM-l]
4 At - 2V Ml MM T M-1Y (M-)Ax Ax
(Ax)
+ F(M-1,n). (5)

Eqs. 4 and 5 are then solved for the image point of the R-method.

N1/4 N, /4

ntl n 2 n+l +1 1
+ (—— + — + ’
Ty =~ 37 Ty &) Tmat (1- M- TnM +TM ——FMLn)
(&x)
with .
: ax: 8 (jat) + T
j 2 M-1 )
TM= N (j = n,ntl).
1+ A% —
2
References
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A Priori Bounds for the Solution to the Heat Balance of a Transient,
Nonisothermal Chemical Reaction

2.

McGuire and Lapidus(3) show that the mass balance for the

reactant in a first order chemical reaction is,

N c 2
2 1 9 290 T
C o = - ¢ c exp(-y (1/| | -1)

¢ is the Thiele modulus and N2 is the

in dimensionless variables.

reciprocal of the dimensionless diffusivity. y is the dimensionless activa-

tion energy. Assume the following initial-boundary data:

c(r,0) = y(r)> 0

(with ¢ (1) = $(0) )

$(6)> 0

c(l, t)

9

(G2 (0,t) = 0)

r
We are interested in the classical solution which is continuous in
2,1 .

[0,1] x[0,t'] and C in [0,1) x (0,t']. The following theorem of Protter
and Weinberger(4) guarantees that

0 <c(r,t) < max {Y(r), $(t)}
b ) t

Theorem Let D be a bounded domain in n-dimensional space and let

E = D x(0,t']. Suppose that u(x,t) is a solution of

L{a) = Flx,tou,uy u ) - %5 = £(x,t)

in E, and that u satisfies the initial and boundary conditions
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u(x, 0)

g (x) in D

u(x, t) gz(x, t) on 8D x (0,t')
We assume that the functions z(x,t) and 2Z(x,t) satisfy the inequalities

L(Z) < f(x,t) < L(z) in E,

and that the operator L is parabolic with respect to the functions

ku + (1 - k)z and ku + (1 - k)Z for 0<k<1l If
z(x,O)Sgl(x) < Z(x,0) in D

z(x, t)f_ gz(x, t) < Z(x, t) on 8D x(0,t'),

then
z(x,t) < u(xt) < Z(x,t) in E,
For the enthalpy balance,
Nl 8T 1 2 8T 2
T o 2 %) + ¢“ B cexpl-y(I/|T| - 1))
with

T(r,0) = g(r)

T(L,t) h(t)

8T
(5= (0,t)= 0)
The maximum principle is used to show that

min { g(r), h(t)} < T(r,t)
r,t .



215

Let w= min {g(r), h(t)} = constant, and v(r,t) = T(r,t) - w.
r, t

Then

aT .

-4 (L& 2T, 2 - -
Pt BT T ) = 55 gy g )t 7P cexn v/ |T{-1)]

leads to L{w] > 0. Applying the mean-value theorem of calculus, one finds

2
_ 418 (rfev), [8F g
that LT} - L{w} = & 2 or or * 19T l1=kT + oo Y7o SO

or in cartesian co-ordinates,

L[v]=;—(vxx+vyy+v )+[8—F: 0

-9V <
A zz' ‘9T |T=kT+(l-k)w]v 3t -

Consider the following theorem of Il'in et al. (1).

Theorem Suppose the function v is continuous in D, that those of its

derivatives which enter into the operator L are continuous, and that it

8F

. . - . < . -- —
satisfies the inequality L[v] < 0 in D -I, where 5T lT:kT+(1-k)w< M

and M is some constant. Then v(x,t) >0 D if v(x,t) >0 on T.

The theorem of Il'in et al. implies that T(r,t) > w(r,t). Let us now
consider an upper bound for the function T(r,t).

The motivation for bounding T(r,t) from above stemmed from the
form of the Lipschitz condition of the dimensionless rate expression (the
nonlinearity) in the enthalpy balance:

f(c, T) = c exp(-y (I/|T| - 1) ).
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That is,
If(cz, Tz)-f(cl.Tl)lf_ exp(-y(l/ ITZI-l))Icz-clH- clmvax{—Yi exp(-y(l/|v]|-1N}.
v

or

|£(c,, T,) - e, Tx” < alcz-cl[ + b[T, - T, |

where we are assuming that T2 > Tl and that <y > Cye If one knows only

that
T(r,t) > 1 (for typical g and h)
1 _>_ C(r’ t) Z 0
then
a = exp(y
. = X
b = Y exp(y-2), (v= 3 )

such that for typical values of y (10 to 30), a and b are quite large.
Alternatively, if one can show that

T(r,t) < m(t)
then

a = exp(-y(l/|m]| - 1))

b = max {lz— exp(-y(l/[v] - 1))}

l_<_v§m v

and a and b may be of 0(l).
Ladyzenskaja et al. (2) proved the following theorem:

Theorem Let u(x,t) be a classical solution of
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u, - aij (%, t, u, ux) uxixj + a(x,t,u, ux) =0 in QT. Suppose that the

functions aij and a take finite values for any finite u, ux, and (x,t) e (ST
and that for (x,t)e QT and arbitrary u

a.lj(x. t, u, 0) fifj >0
and

u a(x’ t’ u. 0) Z 'b uz - b

1 2
where bl and b2 are nonnegative constants. Then
bZ
max |u(x, t) |§ inf exp (A T) { max [u], Y } .
Q \A>b L. 1

T 1 T

and b_, one has

If in place of the condition on a involving b1 2

u a(x, t,u, 0) > - & (|ul) |u] - b2

with bz nonnegative and & (T) is a nondecreasing positive function of

T> 0 satisfying the condition

oC

aT
—_— = 4 ©
g T (T)

then the estimate

max | u(x,t)| < inf ¢ ()

o A> 1
-1 bz -1, max
E = exp(AT) max{l; ¢ m); ¢ L, ful)}

is valid, in which ¢-l( ) is the inverse of the function ¢( ) defined by

the ecuation
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$(§)
dT - Ing
(o]

This theorem is modified slightly for the temperature function of the

enthalpy balance:

Theorem Let T(r,t) be a classical solution of

19T 1 %;_( a-1 aT)+ (¢ B) c exp(-y(1/[T| - 1))

in Qt' = [0,1)x(0,t']. Assume 0 <c(r,t) <1 andlet 1<m < T(r,t).

(¢2. B,y Le >0). Then with

2
-T a(r,t, T,0) > '—(%-9-)-4- exp (-y(1/[T| - 1)) |T]
1

we have
max |T(r, t)lsd_i (), where
Qt'
E=exp (t') max {1, $-l (max |T|[)} with ¢ ()
T
defined by _
¢ (§)
f exp(y(l/|T| -1))daT = £n (§) with
4(4’ B) m
o0
S exp (y (1/[T] -1))dT = + o
m

Proof: If T(r,t) = -d:[v(r,t)], then

-1
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N - 2
1 1L 9 a-19v " 2 (¢ B)c _
2 't~ Ta-1 @ (r 8_17) '%'-(V,) - _5;9'_- exp(-y(1/|T| -1)) = 0

Let ;(r,t) = v(r,t) exp(-\t), A\ >0, then

N v o
< Ve T [rail ‘g‘; (=2t %) + %.'(Vr)z exp(\ t)1
"(QZE)C N]_
+== exp(-y(l/|T| - 1)) exp(-X t) + A ¥ T] = 0

¢l
By definition, as § goes from 0 to ®, '5 (§) goes from - to +

monotonically, such that

T= ¢(v)< & ()

where V is a bound for v: v< ¥. Now, at any (r,t) e at'

vir,t) = V(r,t) exp(rt) < V(ro. to) exp(\t) = v(ro, to) exp(\ (t-to))

7 IThr ot )] exp(h (-5 )) < 371 (M) exp(h(t-t )

<F M e ), (Ttet) <M,

or, more briefly,

v(r,t) < exp(t') (M) =¥

Now, the point at which v (r,t) has its maximum, (ro, to), may be

(L) on the boundary, I‘t, and positive
(2) interior and positive
or (3) nonpositive

For case (3) we can let v(r,t) < exp(\.t'), and for case (1) we can let



220

M be mIa_x ITI For case (2), we have from the transformed partial
tl
differential equation,

2.4
'—(%—E)—-c exp(- y(I/[T] -) + A ' (v) v < 0
1

From the definition of E.

l Nl Y Y +
<= —5— exply(l/[¢] -1)) ¢' with ¢ (1) = m
4(¢ B)

such that
- z -—
v o (v) = HELD eapyq1/13] -1

l
or

-(¢%p) exp(-y(1/|T|-1)) + A (628) exp(-y(1/|T[-1)) <0
or
-1 + A 5 0

such that

and we conclude

max |T(x,t)| < (&)

E= exp(t) max{l; 5-1 (max |T[}

T

The integral defining $( ) can be evaluated using the exponential
integral:
N o)

Je —5— exp(y(l/|w]-1)) dw
4 Bp) m



221

yN exp(-y) - _
3= - ——— Rl exely/9) , gi(y/F) - Eily)]
a(s°p) v/3
As an example, let the parameters be as follows:
Y = 20.0
¢ = 0.25
B = 0.6
N1 = 705.0
a = 3 ’

then we have the following upper bounds for T(r,t) (with m = 1)

Upper bound Maximum of approximate
on solution (n = 6)
t T(r, t) T(x,t)
1 1. 0523 1.0523
5 1.0625 1. 0620
10 1.0776 1.0728
100 0(108) 1.0728

The a priori bound for T(r,t) provides reasonable values up to roughly
t=25 (|T(r,t)| < 1.2).

As with many nonlinear problems, the bound involving an expo-
nential growth in time such that the bound becomes progressively poorer
for long times. The bound, for this example, is quite good for short

times (t < 25).
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3. Specific Equilibrium Constants

For the reactions,

NO+CO = %Nz + Co, (1)
= 1
NO + H, N, + H,0 (2)

the equilibrium constants have been investigated. Using the expressions

for the heats of reaction (Appendix 6) in the van't Hoff equation,

i
AH
d i RXN
= (InK )= —=2 (i=1,2)
aT eq RgTz

and obtaining the initial condition from standard-state data, one finds that

the equilibrium constants are as follows:

tnk! )= L B2 4 o 16540 T + 0.000325 T - 22220 26. 068240)
eq R T 2
g T
tak? )= (82020, 2 835 4nT + 0.000605 T - 22222 _ 20. 740494)
eq R T 2
g T
or,
T(°K) ta(k’ ) (k2 )
eq eq
528 73.0484 55. 7123
633 58. 9114 43.0562
763 46.8011 32. 1800
861 40. 0920 26.1354
1073 29. 7804 16. 8067

The extremely large values for the equilibrium constants indicate that
the reactants would, in all cases of interest, be entirely converted to

the desired products. Unfortunately, there are examples where the

E ]
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rate of conversion is so small that no changes have been detected for
40-50 years (nitric oxide decomposition). While the above results favor
the formation of the products, they do not indicate how fast the conver-

sion is.
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4. Rate Expressions for the Chemical Reactions of the NOx Convertor

Ayen and Ng(1) obtain experimentally the following rate expression
for the catalytic chemical reaction between nitric oxide and carbon

monoxide:

NO + CO-:%NZ + co,

1.1 .1
e | = k" Keo Eno Pco Pro
) L 1 1
(1 + Ko Peo + Ko Pro

2

where the rate constant, kl, is

1

k! = 48.0 exp(-9, 400/(R_T)) _gm-moles

min-gm catalyst

and the adsorption-desorption equilibrium constants, Kl and Kl

co NO* *F€
given as,
K::o = 0.076 exp(8, ZOO/RgT)) atm™ !
and
K! = 0.064 exp(7, 600/R _T)) atm™ L.
NO g
The catalyst was a combination of BaO, Cr,O_, and CuO.

273

Ayen and Peters(2) obtain experimentally the following rate

expression for the catalytic chemical reaction between nitric oxide and

hydrogen:
NO + H, IN, + H,0
2.2 2
k KHZ Kno Pu, PNO
|z, 1 = 2 2
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2 .
where the rate constant, k , is

2

k" = 1.39 exp(-10, 3000/(R T)) _gm-moles

min-gm catalyst

and the adsorption-desorption equilibrium constants, K2 and Kz y are

H2 NO
given as,
2 5 -1
K = 4.5 x 10~ exp(-15,400/(R_T)) atm
I-I2 g
K2 = 3.1 x 10° exp(~13, 300/(R_T)) atm™ .
NO ' g

The catalyst was a combination of ZnO Cr203. and CuO.

3

Let us consider the relative magnitudes of the two rates for

various temperatures (when PnoO = 0.001, Pco ° 0.015, and

pHZ = Pco/3-8)

T(°K) [rll lrzl
100 0. 00000346 10717
200 0.00004703 10712
300 0.00014530 107°
400 0.00017609 0. 00000016
500 0.00014538 0. 00000562
600 0.00010899 0. 00006805
700 0.00008185 0. 00035486
800 0. 00006322 0.00064148

Notice that while Irzl is insignificant at temperatures below 400°K,

it becomes the dominant reaction for temperatures in excess of 700°K.



(1)

(2)
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5. Physical Properties of the Gas Stream to the NOx Convertor

Assume an exhaust composition of,

CcO 6.0 volume %
CIO2 10. 0 volume %
NO 0.5 volume %
02 0. 5 volume %
N2 77.5 volume %
HZO 5.0 volume %
H, 0.5 volume %

and calculate the mixture properties by the following simple empirical

equations(2),
c, = (Z ym; e i)/_n'_x.
i
H
(ZY.l w; (m)%)
_ i
" !
z y, (m)
i
Z 3
i
k, = -
3
Z A (m,)
i
where _xp_'ﬁ" 28 and

.
k., = —_— (1.25 R+ c¢_.), (Eucken's equation)
. m, g P, 1

For Eucken's equation, we have calculated the pure component viscosity

(p.i) using the Bromley and Wilke modification of the theoretical
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Hirchfelder method(2). According to Perry(2), the average expected
errors from these mixture formulas are 2-5%, and the pure component
estimates (for ., ki) are accurate to roughly 3-8%.
We calculated the following values for the mixture Prandtl

number, heat capacity, viscosity, and thermal conductivity:

cal

T(°K) Pr= cpp/kf cp( gm-"C) i (poise) kf(cal/cm-sec°C)
528 0. 754 0. 265 0. 000253 0. 0000889
633 0.761 0.271 0. 000288 0.0001026
763 0. 765 0.277 0. 000328 0.0001188
861 0.766 0. 281 0. 000355 0.0001303
1073 0.769 0. 289 0.000412 0. 0001549

If one assumes that the gas mixture behaves as pure nitrogen, one

finds the following discrepancies from the mixture properties (for tempera-

tures from 528 to 1073°K),

Property Discrepancy
Pr 2%
cp 4%
B 2%
kf 2%

As a result of the small differences, the gas mixture physical properties
were approximated by those for pure nitrogen gas.
The multi-component diffusivities have been approximated by

binary diffusion coefficients. It was found that DNZ-NO and DNZ-CO

were approximately equal (with in 1.5%). Using the kinetic gas theory(l),

one finds the following values for DNZ-NO:
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T(°K) DN _No(cmz/sec) Sc = FHLL—
2 Nz-NO
528 0.550 - 0.712
633 0.749 0.713
763 1.032 0.711
861 1.256 0.713
e 1073 1.814 0.714
where the density is calculated from the ideal gas law.
DNz-NO was approximated by
_ 1.535 e
DNZ-NO = 0.0000389 (T) » (T in °K)

which is within 7% of the above tabulated values.

References
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6. Specific Heats of Rea,cl:ion--NOx Convertor

For the reactions of nitric oxide with carbon monoxide and

hydrogen,

NO + CO = -;-Nz + GO, (1)

= 1
NO + H, IN, + H,0 (2)

the heats of reaction are mild functions of the absolute temperature.
Using the pure component molar heat capacity data of Kelley(l) presented

in the form of an empirical series:
2
Cp =a+bT+c/T

the following expressions are obtained for the temperature dependence of

the heats of reaction (at a pressure of 1 atmosphere):

L= 2, 187,000
AHRXN = -89,942 - 0.165 T + 0.000325 T + T
2 2 _ 4,000
AHRXN = -78,620 - 2.835 T + 0.000605 T + T
where AHp o [z] cal/gm-mole; T [=] °K.

e 1 2 .
The variations of AHRXN and AHRXN with temperature are

quite small:

. 1 2
TC°K) AHpxN AHpwN
528 -89, 410 -79, 941
633 -89,412 -80, 166
763 -89, 382 -80, 426
861 -89, 342 -80, 608

1073 -89, 216 -80, 962
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1 2
i . i i t 1.3%.
AHRXN varies by about 0 2% while AHRXN varies by about 1.3%

The following constants have been used for the heats of reaction:

1

AHRXN = -89, 300 cal/gm-mole
2 -—
AHp g = -80, 500 cal/gm-mole
Reference
(1) Kelley, K. K., High temperature heat content, heat capacity, and

entropy data for the elements and inorganic compounds, U.S. Bur.
Mines Bull., 584 (1960).
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7. Maximum Temperature Differential Between the Bulk Fluid and the
Catalyst Particle Surface

Consider the following enthalpy and mass balances for the
chemical reaction between carbon monoxide and nitric oxide, with

properties assumed constant:

aT
1 d 2 8 1
kg Z 4 (£ g7 )+ pg FAHR) (1-e) [r;l= 0
NO -
e 1 d ngE
"Ds';'iTr(r dr )"’s“"p)mNolr1|=°

k =— (R) = h (T

s dr p t Ts (Rp) )

bulk
NO

dg
e Bp _ NO , NO NO
p D, o3 (RP)- p k (8 ik - g, (Rp) ).

By forming a linear combination of the enthalpy balance and the mass

balance, one has

e 1
d .24 pD  (-AHp N NO
d—(r F(ksTs+ m g, 11= 0
Tr r NO p
This is integrated such that
aT pD: (-A H;m) agh©
k_ -—§dr (r) + — dp (r) = 0
NO T

or, using the third and fourth boundary conditions at r = Rp'

H
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1
)
p k RXN NO

+ —& (g, - 8 (R))
bulk ht Mo bulk P )

NO (-AH

Ts(Rp) =T

Physically, the maximum surface temperature occurs when gI:o (Rp)= 0:

NO 1
p k (-AH )
s p bulk - ht myo bulk

Assume Sh = Nu such that k /h = D‘:/kf = (1.03 cmz/sec)/(O. 00012

cal/cmz-sec-"C), p = (Pt E)/(RgT) = (latm x 28gm/gm-mole)/

3 o o 1-
(82. 06 atm-cm”~/(gm-mole-°K))x773°K), (- AHRXN)

m
gm-mole, and that g??k —NO

89, 300 cal/

30 .
(?n-_)—— PNo © 28 (. 001). These are typical

values. Then,

|IT(R)-T < 13.5°C
s p -

bulkl
This value is compared with the maximum allowable temperature

differential within the particle under identical conditions:

l l
CaHpuPli-eg) s

T (r) - T_(1) = SG(r. t, Sh) [——

o -]

l t2at

where r is dimensionless (length standard used is Rp) and G(r,t, Sh)

is the following Green's function:

Szh+1 1, tSr
G(r,t, Sh) = {

2 1

— — N >

Sh +t l, t> r

The integral equation is reduced to the following inequality:
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(-aHL e (e IR
kS

IT (r) - T (] <1 E_P1E | (buli] | tht[
8 8 -

where £ is the effectiveness factor and the integral is bounded by,

, (Table 3 of Chapter B)

2

l 1
st 3

Assume Rp = .159cm, p_=2.9 gm-catalyst/cm3. €, = 0. 45,
ks = 0.00090 cal/cm-sec-°C, and Pco © 0.015. The rate of reaction
for the bulk fluid conditions is then 0. 0001454 gm-moles/(gm-catalyst-

min) and

|
[T () - T_(1) | < 9.66 [z + 3 EE]E (°C)

Then the temperature differential through the catalyst (no more than
2.5°C) is roughly 12% of the temperature differential across the boundary
layer film. Thie comparison justifies the use of a lumped parameter

equation to describe heat transfer within the catalyst particle.
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8. Effective Radial Thermal Conductivity in a Packed-bed Reactor

The methods and data presented by Yagi, Wakao, Kunii, and Smith
(1,2, 3,4,5) are used to calculate effective thermal conductivities in
packed-beds. The basic assumption for both axial and radial thermal
conductivities is that the coefficient is the sum of a stagnant contribution

and a dynamic contribution:

o
k k
e, R _ e, R
" = ke + }(ap)H Pr- Re
f
o
k k
e.L &L +8 Pr'Re
kf kf

Assuming the packed-bed has a random particle structure, the stagnant

contributions, k and k: should be identical. Yagi and Kunii(l)

o
e, R L'
and Kunii and Smith(3) propose methods of calculating the stagnant con-
tribution, which include the effect of radiant heat transport mechanisms.
The magnitude of radiant heat transport effects depends on the particle
diameter, the particle thermal conductivity, and the temperature level.
Let us consider the effective radial thermal conduétivity. Assume
a solid thermal conductivity, ks, of 0.00078 cal/{cm-sec-°C), a particle
diameter, dp, of 0.318 cm, a solid emissivity of 1, and a packing void

fraction, ¢, of 0.35. We are interested in the following conditions

(see Table 2 of Chapter C):
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Bulk fluid Bulk fluid
temperature thermal conductivity Reynolds
(°K) (cal/(cm-sec-"C)) number
528 0.0000889 31
633 ~0.0001026 41
763 0.0001188 52
861 0.0001303 66
1073 0.0001549 87

Kunii and Smith(3) derive the following expression for the stagnant contri-

bution to the effective thermal conductivity for the packed-bed:

o
k h dp
f:e(l-}-p 11:’ ) + g (l-e)l
f £ y(kf/ks)+ ——-—-—-1 B
L 4P IS
kf

where hrV and hrs are film coefficients for the radiant transport of
energy through the voids (v) and from solid-to-solid (s), B and y are
characteristic lengths associated with the packing(3) which from Kunii

and Smith's correlation are both unity, and ¢ is expressed by

€ - €

‘¢=¢2+(¢1-¢2) .

1 2

with € = 0.476 and €, = 0. 260. ¢1 and ¢2 are presented graphically

in the work of Kunii and Smith(3).
These expressions and data are used to calculate the effective
radial thermal conductivity. The following figure compares the results

obtained with (h , h =0) andwith (h , h # 0) for k {(using
rv rs rv Trs e,

R
(), = 0.10):



00016 -

ke, R T
(cal/cm-sec- °C)

00008

238

Including
radiation

Neglecting
radiation

Re (1 - ¢)

It is interesting to note that radiant transport in packed-beds can become

significant at lower temperatures than those normally required for

significant black-body radiation(l). This is especially true for low

Reynolds numbers—less than 100.




(1)

(2)

(3)

(4)

(5)

Notation
ke.R' ke,L
o (o}
ke, R’ ke,I.a

kf

Pr = Cp/k,
Re= Gd /P_
(Olﬂ)H
6
h

rs
h

rv
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Remarks

effective radial and axial thermal ‘
conductivities—cal/cm-sec-°C

stagnant contributions to the radial and
axial thermal conductivities

thermal conductivity of bulk fluid
Prandtl number
Reynolds number

parameter from Kunii and Smith(3)—usually
in the range of 0.10 to 0.14

parameter from Kunii and Smith(3)—usually
in the range of 0.7 to 0.8

heat transfer coefficient for radiation,
solid to solid

heat transfer coefficient for radiation,
void to void

reactor void fraction
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9. Heat Transfer Coefficients

Previous calculations (Chapter C; section 3) indicated that the
thermal response of the catalyst particles (for the NOx convertor) could
be modelled quite well by a lumped parameter assumption. A lumped
parameter description of such a problem will involve an over-all heat
transfer coefficient rather than a heat transfer coefficient. We give
three ways to calculate an over-all heat transfer coefficient, h_.. The

ot

three values for ho are obtained by comparing (1) the average particle

t
temperature to the surface temperature (both temperatures are calculated
from the first term of the exact series solution), (2) the average particle
temperature and the surface temperature (both temperatures are calcu-
lated from a one-term orthogonal collocation solution), and (3) a lumped
parameter temperature and the temperature at the interior collocation
point of a one-term orthogonal collocation solution. The three values for
hot are discussed in the above order.

Consider the following description of the distributed parameter
problem: a constant inlet temperature (for example, a gas stream) is
introduced into a well-stirred mixing cell. In the mixing cell there is a
spherical particle, which at time equal to zero has a specified constant
temperature distribution. There is a film resistance to heat transfer at

the particle surface. For this problem we have the following dimensional

equations:

Bulk: ht(Tcell- Ts(Rp' t) = K(T'mlet- Tcell) )



F 1'_r'1cf
where K = z (2)
(1 -¢) Vi-a-
P
8T aT
. 8 _ 1 3 2 8
Solid: Pssat kg r2 ar (r or ) (3)
OTS
== (0,t)= 0 (4)
aTs
ks 37 Rprt) =T oy, T (R, t)) (5)
Ts(r. 0) = Tinitial' a constant (6)
Nondimensionalize the temperatures by using the T, . . as the
initial
standard. Eq. | is solved for T )
cell
1+ f TS(RP, t)
Teen = 7171 (7)
ht
where f = R (8)

Using eq. 7, one is able to replace eq. 5 by the following:

8Ts ht

(1- TS(RP, t) (9)

Nondimensionalize eqs. 3, 4, and 9 using Rp as the length standard and
ks/(Rlz) Py cs) as the time standard. The resulting equations have the

following solution (in the dimensionless variables):

2 . 2
v, sm(yn r) exp(--yn t)

o0
-1.2Nu
Ts(r.t) =1- r 2 Z Sin( )( ) N (g_l_l l)—l\{g) (10)
n= o yn yn 2 2
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where

htdp )
N = [ ll
%7 1+ f (1)

8
and yn's are the roots of,
) N

y_cosly ) + sinly ) (5 -1) = 0 (t2)

This solution, eqs. 10 and 12, was obtained using Laplace transform
methods. Eq. 10 is truncated to one i2rm of the indicated summation—
this represents the asymptotic solution (valid for large t). We then

define the following over-all heat transier coefficient:

hot(Tcell(t)-Ts(t)ave. )= 1”'t(Tcell(t)"Ts(l' t) (13)
All of the temperatures occurring in eq. 13 are obtained from the
truncated series; Ts(t)ave is the mean value of the asymptotic tempera-

ture distribution. When the required aigebra is performed, one obtains

the following result:

t - 3Bi o5 (14)
ot y2
1
h R
where Bi = T‘L
]

This completes the definition of an over-ali beat iransfer coefficient (eq.
14) based on the asymptotic behavior of ‘e distrivuted parameter temper-
ature.

Let us now consider an sver-all heat tranefer coefficient based on

the mean value of the distribu.2d param:ter temperature. The
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dimensionless equatibns for the heat transfer problem are,

8T
s 1 9 2 8T
5T - Zoer T oar) ' (3
r
aTs .
3= (0,t) = 0 (16)
oT ‘
s - Nu., .
= (LY = S (L-TL 0 | (17)

If we apply orthogonal collocation to eq. 15,

dT
8, !

dt

= B“T +B_T =-B12(T -T (1L8)

s, 1 12 s,2 s, 1 s.Z)

and to eq. |7 (assuming eq. 16 is satisfied by the choice of polynomials),

Nu
AT 1 8T =7 UW-T 5 (19)
or,
Nu Nu
(At 5 )T =5 tAp T, (20)

Using eq. 20, one can reduce eq. 18 to the following:

de,l - (BIZ 2 ) (T - 1) 1)
dt - A 4 Nu s, 1
22 2

Eqs. 7 and 13 are combined and rearranged to define the following over-
all heat transfer coefficient (where the temperatures are now the colloca-

tion solution):
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h, (T, ve. -I(1 + f)
= T ] -f (22)
ot 8,2
but
( s)ave. j Y1 (Ts.l - 1) + WZ (23)
Ts.Z -1 w, + w, (Ts,Z - 1) w1+w2
and
T -1
:r—g-’-l—:l— =1+ %E -Z—-l— » (from eq. 19) (24)
s, 2 22
For the Legendre polynomials, A22 = 5, w, = o, w, = -15 , and the

final relation between ht and the defined hot is,

h

t Bi
T = 1+ 5 (25)
ot

As our final over-all heat transfer coefficient, we consider the

following description of the original heat transfer problem:

dT's 3hot
- -
Ps®s at 3R Teenn ~ T8 (26)
P
with
- [} = -
hot(Tcell Ts) K(Tinlet Tcell) (27)

If we nondimensionalize eqs. 26 and 27 using the time standard intro-
duced previously,

dT! 3h R
s t

= ° P - !
dt ks (Tcell Ts) (28)
- ! = -
(Tcell Ts) f(Tinlet Tcell) (29)
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If eq. 17 is written interms of T , one obtains an equation similar
a cell

to eq. 21 but with 1 replaced by Tc If we identify Ts of this

ell’ 01

equation (similar to eq. 21) with T's of eq. 28, then the following equa-
tion results:

h 3(A,, + Bi)

t
= (30)
hot BIZ

(we have required that Tc be identical for the two equations). For

ell

the Jacobi polynomials, we have (from eq. 30),

h

t Bi
0 = 1+ -—-—3. 5 (31)
ot

We have derived three different expressions for the over-all heat
transfer coefficient: eq. 14, eq. 25, and eq. 31. A comparison of the
three (using eq. 14 as our standard) shows that eq. 31 is better than eq.
25 for large Biot numbers. For other values of the Biot number, we

must specify the value of f (eq. 8). One is interested in the following

parameters: '
€ = 0. 35 m = 28.
V., = 43.2 in° d = 0.125in
i P
F = 50 SCFM k, = 0.00006 BTU/sec-ft-°F
c, = 0.26 BTU/Ib-°F k. = 0.00000876 BTU/sec-ft-°F

with Re = 43 and Pr = 0.766. Thoenes and Kramer(l) give the

following correlation for ht:
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ke

t - a
p

0.8 0.4 2

1
1 0.
h (2.42 (Re* Pr)? + 0.129 Re Pr + 1.4 Re ') (32)

such that ht = 0.011 BTU/sec-ftz-"F. As a result, one finds that f =
6.1, or Bi = 0.954 (y1 = 0.63, the first eigenvalue of eq. 12). The

asymptotic over-all transfer coefficient is then

h . = 0.00980 BTU/sec-ft2-°F .

Eq. 25 (orthogonal collocation with the average temperature related to

the surface temperature as the definition of hot) gives

Qe -~y

h =0 00923 BTU/sec-ftz-"‘F .

As the following table shows, eq. 25 is better for low Bi numbers and

eq. 31 is better for high Bi numbers.

(for £ = 6.1) l‘lt:/hot:
Bi Yy eq. 14 eq. 25 eq. 31
0. 0355 0.1224 1.0086 1.0071 1.0101
0.071 0.1730 1.0168 1.0142 1.0203
0.71 0.5423 1.14 1.14 1.20
7.1 1.5708 2.53 2.42 3.02
78.1 2.8628 22.5 16. 6 23.3
717.1 3.1105 216. 144. 206.

For the transient analysis of the NOx convertor, the Bi numbers
were low (of order 1) and eq. 25 was used to calculate the corresponding
over-2ll heat transfer coefficient as the inlet conditions to the convertor

changed.
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10. Transient Mixing-cell Model for the NOx Convertor

The presentation of the mixing-cell model in Chapter C is
intentionally brief. Here we provide an expanded presentation of the
explicit equations and define various constants as they are used in the
computer program.

Consider a series of three mixing-cells as in the following sketch

NO CO NO CO NO CO r [NO co
g,0'80 ’ g, 1’81 ' T,,278 '8 g,3' 83 ' 83
Cell 1 Cell 2 Cell 3

-

The volume of each cell, Vn’ is then simply V /3. The heat balance

total

for the solid phase in the i-th cell is,

dT 6h (-AH

1 2
s, ot RXN! (-AHp xN)

T RXN
dt dpp s g:i 8,1 60 PCyq

<|r1l>i+———6(Jp = (I, I,
S 8

(where we have included conversion factors: units of seconds, grams,

centimeters, and calories) and the heat balance for the gas phase in the

Fm Ce T . 6(1- e)Vi hot .
(60x359.05/453.59) g, i-l dp 8, i
T .= —
(60 x 359. 05/453. 59) * d

P
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Define
6(l-¢)V, m c
- i : w. = £
W © d ’ 2 - (60x359.05/453. 59)
A . m Ce
s  (60x359.05/453.59) (l-¢) V. c
and SRPI (T g0 (1,65° (o] ra
Pe . "1V e, i’ 8p, 1 VT B, T
<lrll.\i= R
P2
J r dr
(o]
_ gm-moles NO

min-cm catalyst

such that the enthalpy balance for the solid phase is re-written as,

1 1
de,i - (wlAs)hot F (T . )+ (-AHRXN) k (Tref) (Il"l)
dt wlhot+ WZF g,i-1 s,i 60 o l i
2 2
. (-AHp N B (T of) et [y (1)
60 g 2'i

where ( Ir'll)l and (Ir'zl).1 are dimensionless rates of reaction (with
respect to the rate constant evaluated at Tref = 380°K). For low
temperatures the reactions proceed at such low rates that the solid

heating i - essentially governed by

dT . (wA 'h F
s, 1 _ l 3 ot (T T )
dt w1 hot + w2 F gsi-1 8,1

The nitric oxide mass balance for the solid phase (catalyst particle of

i-th cell) is
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NO 2
9g . p kKY(T_ ) p kK (T_ )
s 1 8 ,2_7psi_ 8 ref , s ref  ,
PO, 2 or =" 3¢ ) ™Nno" o (rl)_i %0 (r3); ]
or
agNEO p K(T__)R’R
5 .
l 2 aa' ((r?) ar"1 )= MnoTs, i ss = £ (r});
() °F 'V p*p m 60
e ¢t
pskz(Tref) Ri R
tmyeTs, s oo £1 ),
! De Pt m 60
where r' = r/Rp. Define
1 2
bl - psk (Tref) RpRg
s D° P m 60
e ¢t
2 2
bZ - psk (Tref) RpRJ
s D° P @ 60
e ¢t
such that
2O |
18,280 ! 2,
7 B2 (r ™ ) = myo T . bs (|r'l|).l + mNOTs,ibs( Irzl).1
T (2)
with the boundary conditions,
g O KO g
or e=1l T e gy mep
D ’
s
NO
98, i :
or -'r=0 =0 (4)

But from the mass balance for nitric oxide in the i-th cell,
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No_nNo - )V.m, (359.05/453.59)p
i B Fm

: O, M KT 9

Similar results hold for carbon monoxide, while hydrogen concentrations

are describable in terms of nitric oxide and carbon monoxide.

m m
gHz _ gHz 5 &0 N0 Hz («<© - 49
i i-1 mNO i=1 i mCO i=1 i
m m
H, H, "H, o No. 2  co co
P NO P co P

Numerically, a differencing scheme is applied to eq. 1 while eqs. 2-5
are solved by orthogonal collocation. By including eq. 5 in the boundary
condition of eq. 3, we obtain a nonlinear boundary condition. Using the
improved Euler (explicit) method, one finds that the procedure of

obtaining the solution numerically presents no problems.



11. Series Solutionto: u + u = au
t x XX
du du 1 d azu
PrOblem: gt' + -a'; = -ﬁé (T —E
ox
du _
™ (,t) = O
1 d . du
1 - u(0! t) - Pe ( L )ax (0' t)
let v = 1l -u, then
L L
v _ -1_(2-) ePe(a)x 2_'[6-Pe(d )x av
ot Pe 'L ox ox
ov
T (I, t) = 0
1 d 9v
v(0,t) - Pe (f)a_x (0,t) = 0
(can solve by separation of variables)
vix,t) = X (x) T (t)
L L -
o g, Fla o Pelaax
T  Pe'L'x dx ax' - "%n
-ut
such that T =A e
n n
L - L
and -(-i-[e-Pe(d)x dzSn] + Pe (l") 2 -Pe(?)x X =0
dx dx a'¥n € -n
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- 1 d, =t
X (0) - Pe (i) X (0)=0

=1
X ()= 0

1 d .
let a = B ()
X
X -eza[Za
-n
L x
with 5}-{-}-( e dx= 0 n m
-n =m
o
1 x 2
=2 a 1 1 n
S.—n dx--z-{4a(a[ 2--;—|+1)+l}
o 4a
H-Z
L X 8:.[—1'2- an
S‘ _ -3 4a
o}_{ne dx = p.z
I
4a
such that p.z
(—= L
od a 4a - -p.zt
u(x,t):l-z X e "
(2+1) -n
n=o "n '"*n

with ""121 determined from

1 2, .
- —3 t (l-Zap.n) sin

4a
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The series solution is poorly behaved for small a,

2= 5o (£ = 0 IF]

or, in other words, for large L/d.
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12. HZ Concentration in Automobile Exhaust

In the dynamic model for the catalytic convertor, the effect of the
reaction between nitric oxide and hydrogen are included as,

—

NO + H

2 $4H, + H O

2 2

but as mentioned by Kuo et al. (2), the molecular hydrogen in the exhaust
gas is very difficult to measure during the transient driving conditions.
An assumption usually made is that the hydrogen concentration is simply

the equilibrium concentration for the water-gas shift reaction:

= O
C02+ H CO + H2

Gross et al. (1) mention that the equilibrium constant is usually between
3 and 4 for automobile exhaust and that a value of 3.8 is commonly
accepted.

Given a fuel com_position (viz., iso-octane, C8H18) and the
air/fuel ratio (viz., 15), the hydrogen concentration can be found as a
function of the carbon monoxide concentration. Assuming the fuel con-
tributes the only hydrogen and carbon to the exhaust, eq. 1 represents
the conservation of H and C atoms (using the ideal gas law). Eq. 2
is the sum of the partial pressures (neglecting oxygen) and eq. 3 is the

equilibrium condition.

(ZPHZ + ZszO) : (IZpCOz + 12pCO) = (18mH) : (SmC) (1)
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P, + P +p +p +p =1 (2)
H, HZO co, (ofo) N,

(P Py S/ (P p,,) = 3.8 (3)
co Pu,0"fco, °H,

Eqs. 1-3 are solved to give the following equation which expresses the
hydrogen partial pressure as a function of the carbon monoxide and

nitrogen partial pressures:

9
77 (1 - Py )
P = 2 (4)
H, -?_7 28 (1 .py)-2.8
Pco 2

If the nitrogen partial pressure is assumed to be approximately constant,
eq. 4 relates the carbon monoxide partial pressure (for which data is
available) to the hydrogen partial pressure (for which data is not avail-
able). For an air/fuel ratio of 13 the nitrogen partial pressure is 0.775
while for an air/fuel ratio of 17 the nitrogen partial pressure is 0.779.
We have assumed that the nitrogen partial pressure is constant and has

a value of 0.777. Eq. 4 then yields the following results:

Pco Py Py. = Pco/38
2 2
(eq. 4)
0. 01 0. 0032 0. 0026
0. 02 0. 0069 0. 0053
0. 04 0. 0165 0. 0105
0. 06 0. 0307 0.0158
0.08 0. 0540 0.0211

We used the approximate expression (column 3 of the above table) to

calculate the hydrogen concentration. At low values of Pco the
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approximation is roughly 20% lower than that of eq. 4. The

approximation is conservative: lower Py values represent lower
2
rates of reaction with nitric oxide and, consequently, lower conversions

of the pollutant, nitric oxide.
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