ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Dissertations and Theses
    • Oceanography
    • View Item
    •   ResearchWorks Home
    • Dissertations and Theses
    • Oceanography
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantifying Sea-Ice Volume Flux using Moored Instrumentation in the Bering Strait

    Thumbnail
    View/Open
    Travers_washington_0250O_10669.pdf (14.60Mb)
    Date
    2012-09-13
    Author
    Travers, Cynthia Suzanne
    Metadata
    Show full item record
    Abstract
    The Bering Strait is the sole pathway linking the Pacific and Arctic Oceans, and carries one-third of the freshwater entering the Arctic. Although the strait's throughflow dominates the hydrography of the highly productive Chukchi Sea and affects the freshwater budget and thermal structure of the Arctic Ocean, the contribution of sea ice to the freshwater flux has never been satisfactorily quantified. We use data from an array of subsurface moored Acoustic Doppler Current Profilers (ADCPs) and other instruments deployed in the Bering Strait from 2007–2008 to calculate the sea ice and corresponding freshwater volume fluxes through the strait. Data from remote-sensing systems such as the Advanced Microwave Scanning Radiometer (AMSR) and modeled sea level pressure data provide a check of ADCP-derived measurements. We correct the ADCP sea-ice thickness records for instrument-based errors (instrument pitch and roll, ridge shadowing, beam footprint, beam averaging, range outliers) and environment-based errors (sound speed variation, instrument depth, sea-ice freeboard and snow loading), and determine the uncertainty in our volume flux calculations. We estimate the total error in ADCP ice thickness measurements to be of order 0.5 m, with ∼ 46% of this error resulting from beam footprint effects that would remain even if a more precise sonar instrument had been used in our study. We compare our estimates of sea-ice volume flux (190 ± 50 km<super>3</super> yr<super>-1</super>) and corresponding freshwater transport (140 ± 40 km<super>3</super> yr<super>-1</super>) through the strait to values from previous surveys, commenting on differences in methodology between the studies. Our findings allow us to assess the utility of subsurface moored ADCPs in quantifying sea-ice presence, thickness, and velocity; the ADCP signal correlation parameter appears to provide a particularly good indication of sea-ice presence. In addition, we consider the use of similar methods to evaluate historical ADCP records and develop a more complete understanding of interannual sea-ice flux variability through the Bering Strait.
    URI
    http://hdl.handle.net/1773/20503
    Collections
    • Oceanography [108]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV