ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Dissertations and Theses
    • Atmospheric sciences
    • View Item
    •   ResearchWorks Home
    • Dissertations and Theses
    • Atmospheric sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    What can we learn from the cleanest marine boundary layers? Insights from the North Atlantic

    Thumbnail
    View/Open
    Pennypacker_washington_0250O_18293.pdf (7.447Mb)
    Author
    Pennypacker, Sam
    Metadata
    Show full item record
    Abstract
    We present a case study (September 20 – October 13, 2015) of synergistic, multi-instrument observations of aerosols, clouds and the marine boundary layer (MBL) at the Eastern North Atlantic (ENA) ARM site centered on a period of exceptionally low (20 – 50 cm 3) surface accumulation mode (0.1 – 1 μm) aerosol particle number concentrations. We divide the case study into three regimes (high, clean and ultra-clean) based on daily median number concentrations, and compare finer resolution (hourly or less) observations between these regimes. The analysis focuses on the possibility of using these ultra-clean events to study pristine conditions in the remote MBL, as well as examining evidence for a recently proposed conceptual model for the large-scale depletion of CCN-sized particles in post-frontal air masses. Relative to the high and clean regimes, the ultra-clean regime tends to exhibit significantly fewer particles between 0.1 and 0.4 μm in diameter and a relatively increased prevalence of larger accumulation mode particles. In addition, supermicron particles tend to dominate total scattering in the ultra-clean regime, and there is little evidence for absorbing aerosol. These observations are more in line with a heavily scavenged but natural marine aerosol population and minimal contribution from continental sources such as anthropogenic pollution, biomass burning or dust. The air masses with the consistently lowest accumulation mode aerosol number concentrations are largely dominated by heavily drizzling clouds with high liquid water path (LWP) cores, deep decoupled boundary layers, open cellular organization and notable surface forcing of sub-cloud turbulence, even at night. We end with a discussion of the implications of this work the second aerosol indirect effect and pristine conditions in the remote MBL.
    URI
    http://hdl.handle.net/1773/41735
    Collections
    • Atmospheric sciences [312]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    @mire NV