ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Dissertations and Theses
    • Civil engineering
    • View Item
    •   ResearchWorks Home
    • Dissertations and Theses
    • Civil engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Learning for Short-term Network-wide Road Traffic Forecasting

    Thumbnail
    View/Open
    Cui_washington_0250E_22671.pdf (36.65Mb)
    Author
    Cui, Zhiyong
    Metadata
    Show full item record
    Abstract
    Traffic forecasting is a critical component of modern intelligent transportation systems for urban traffic management and control. Learning and forecasting network-scale traffic states based on spatial-temporal traffic data is particularly challenging for classical statistical and machine learning models due to the time-varying traffic patterns and the complicated spatial dependencies on road networks. The existence of missing values in traffic data makes this task even harder. With the rise of deep learning, this work attempts to answer: how to design proper deep learning models to deal with complicated network-wide traffic data and extract comprehensive features to enhance prediction performance, and how to evaluate and apply existing deep learning-based traffic prediction models to further facilitate future research? To address those key challenges in short-term road traffic forecasting problems, this work develops deep learning models and applications to: 1) extract comprehensive features from complex spatial-temporal data to enhance prediction performance, 2) address the missing value issue in traffic forecasting tasks, and 3) deal with multi-source data, evaluate existing deep learning-based traffic forecasting models, share model results as benchmarks, and apply those models into practice. This work makes both original methodological and practical contributions to short-term network-wide traffic forecasting research. The traffic feature learning can categorized as learning traffic data as spatial-temporal matrices and learning the traffic network as a graph. Stacked bidirectional recurrent neural network is proposed to capture bidirectional temporal dependencies in traffic data. To learn localized features from the topological structure of the road network, two deep learning frameworks incorporating graph convolution and graph wavelet operations, respectively, are proposed to learn the interactions between roadway segments and predict their traffic states. To deal with missing values in traffic forecasting tasks, an imputation unit is incorporated into the recurrent neural network to increase prediction performance. Further, to fill in missing values in the graph-based traffic network, a graph Markov network is proposed, which can infer missing traffic states step by step along with the prediction process. In summary, the proposed graph-based models not only achieve superior forecasting performance but also increase the interpretability of the interaction between road segments during the forecasting process. From the practical perspective, to further facilitate future research, an open-source data and model sharing platform for evaluating existing traffic forecasting models as benchmarks is established. Additionally, a traffic performance measurement platform is presented which has the capability of taking the proposed network-wide traffic prediction models into practice.
    URI
    http://hdl.handle.net/1773/47035
    Collections
    • Civil engineering [377]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    @mire NV